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Abstract

In previous work it was shown that the automorphism group of a label-regular tree,

denoted AutpTaq, can be decomposed into a Cartan-like decomposition, moreover,

the coset representatives in the decomposition satisfy the contraction group prop-

erty : every unbounded sequence of coset representatives has a subsequence with

non-trivial contraction group. This leads to the proof that the range of every con-

tinuous homomorphism from the simple subgroup of AutpTaq generated by edge

stabilisers is closed, and we say that this subgroup has the closed range property.

In the present article, after giving the reader an introduction to totally disconnected

locally compact groups acting on trees and buildings, we study these contraction

group and closed range properties in a larger class of totally disconnected locally

compact groups, resulting in closedness of range results for a variety of different

simple totally disconnected locally compact groups. We also study the contraction

group and closed range properties in more generality, in particular, we answer

the question of whether the contraction group property depends on the choice

of compact open subgroup or choice of coset representatives in our Cartan-like

decomposition, and whether the closed range property passes to subgroups and

supergroups.
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CHAPTER 1

Introduction

Broadly speaking, group theory is the mathematical study of symmetries through

the study of an algebraic structure called a group. A common question in group

theory research over the past century or more has been concerned with the clas-

sification, or the attempt to classify, large classes of groups. Currently there is a

classification for finite simple groups, however, much less is known about the class

of infinite groups. Locally compact topological groups are a natural class of groups,

containing all finite groups and many infinite groups, and they appear in numerous

applications across all of mathematics. Modern research is concerned with classi-

fying and building a structure theory for the class of locally compact topological

groups. Every locally compact group G admits a short exact sequence:

1 ÝÑ G0 ÝÑ G ÝÑ G{G0 ÝÑ 1

where G0 denotes the connected component of the identity in G, which forms a

closed connected locally compact normal subgroup of G. Hence, understanding

any locally compact group G essentially reduces to understanding the connected

locally compact subgroup G0, and the totally disconnected locally compact quotient

G{G0.

Connected locally compact groups are already fairly well understood: in work by

Gleason, Montgomery and Zippin [Gle51, Gle52, MZ52] to solve Hilbert’s fifth

problem, connected locally compact groups have been identified as inverse limits

of connected Lie groups. Thus the well developed techniques of Lie theory can

be used to understand the class of connected locally compact groups. Totally

disconnected locally compact groups (t.d.l.c. groups from now on) on the other

hand are not as well understood, and for many years the only known general result

for t.d.l.c. groups was a theorem by van Dantzig from 1931 (c.f. [vD31, vD36]),
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2 1. INTRODUCTION

which asserts that every t.d.l.c. group admits a basis of compact open subgroups. It

wasn’t until the 90’s, when Willis published the paper ‘Structure Theory of Totally

Disconnected Locally Compact Groups’ [Wil94] that significant advances started

to be made in understanding t.d.l.c. groups. In this paper, Willis studies the space

of compact open subgroups of a t.d.l.c. group, and introduces the notion of the

scale function and tidy subgroups for t.d.l.c. groups, which allow for arguments

of dynamical nature to be made and has formed a significant contribution to the

structure theory of t.d.l.c. groups. As a result, rapid progress is now being made

in constructing a structure theory for t.d.l.c. groups, however, much more work is

still needed.

Some of the most recent progress in the study of t.d.l.c. groups has been in un-

derstanding the class of compactly generated t.d.l.c. groups. Indeed, every t.d.l.c.

group can be recognised as a directed union of compactly generated open subgroups,

hence, understanding the compactly generated ones can assist in understanding the

broader picture. Recent work for instance by Caprace–Monod in [CM11], Caprace–

De Medts in [CDM11] and Caprace–Reid–Willis in [CRW17a, CRW17b] have

all contributed significant advances to the study of compactly generated t.d.l.c.

groups, and a better picture of these groups is now presenting itself.

The Cayley-Abels graph construction illustrates the ease of working with com-

pactly generated t.d.l.c. groups and the significance of automorphism groups of

graphs in the theory of t.d.l.c. groups: the Cayley-Abels graph associated to a

compactly generated t.d.l.c. group G, is a locally finite connected graph that G

acts on vertex-transitively with compact open vertex stabilisers, and generalises

the idea of a Cayley graph of a finitely generated group to compactly generated

t.d.l.c. groups (see [KM08] for more details). It is a known result that every

compactly generated t.d.l.c. group can be represented as a group of symmetries

of its corresponding Cayley-Abels graph. It is also true that the automorphism

group of every connected locally finite graph is a t.d.l.c. group, hence, the study of

compactly generated t.d.l.c. groups is more or less coextensive with the study of au-

tomorphisms of connected locally finite graphs. As a result, a prominent feature of

the study of t.d.l.c. groups over the past couple of decades has been in understand-

ing automorphism groups of locally finite connected graphs, in particular, infinite
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locally finite trees, and this has turned out to be an extensive and fruitful area of

study. Those groups with a non-discrete topology are of utmost importance to the

structure theory of t.d.l.c. groups.

In the present article, after introducing some basic concepts and notation in Chapter

2, we begin in Chapter 3 by surveying the current literature on automorphism

groups of locally finite trees. This includes the universal groups construction seen in

[BM00] and some of its generalisations, as well as the k-closure construction from

[BEW15]. These groups all provide a large array of examples of (non-discrete)

compactly generated t.d.l.c. groups acting on trees as discussed in the previous

paragraph. Neretin’s groups, or almost automorphism groups of trees, are also

surveyed in this chapter. These are groups acting on the boundary of a rooted tree

and provide further examples of non-discrete compactly generated t.d.l.c. groups.

This chapter provides a strong foundation for Chapter 4 and Chapter 5 where we

build upon the results seen in the paper [CW20].

The article [CW20] follows a recent trend in work that involves taking ideas from

the theory of Lie groups and algebraic groups, and testing whether similar results

hold for t.d.l.c. groups. In this paper, a certain type of infinite labelled tree called

a label-regular tree is studied, and it was shown that the automorphism groups of

these trees admit Bruhat and Cartan type decompositions as typically seen in the

theory of Lie groups and algebraic groups. As a result of these decompositions,

it is also shown that continuous homomorphisms from the simple subgroup gen-

erated by edge stabilisers have closed range, analogous to a result for simple Lie

groups. This is a result of a more general argument: simple groups admitting a

Cartan-like decomposition satisfying a property, called the contraction group prop-

erty, also satisfy the property that every continuous homomorphism from the group

has closed range, which we call the closed range property. In Chapter 4, we study

the contraction group and closed range properties in greater detail than what was

seen in [CW20]. In particular, we determine whether the contraction group prop-

erty depends on choice of compact open subgroup or coset representatives in our

Cartan-like decomposition. We also show that the closed range property passes to

supergroups under certain circumstances.
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In Chapter 5 we investigate the contraction group and closed range properties in a

broader class of automorphism groups of trees that we introduced in Chapter 3. In

particular, we look at the groups GpF, F 1q studied by Le Boudec in [LB16]. These

groups do not satisfy the closed range property in most cases since they are not

closed in AutpTdq (except in trivial cases), and as a result, it is expected that they

will provide examples of groups that do not satisfy the contraction group property.

We provide an example of a decomposition of one of these groups to illustrate

how the contraction group property can fail. We then prove some more general

closed range results for groups satisfying a generalised version of Tits’ independence

property called Property Pk. The main result is the following theorem:

Theorem 5.4. Let G ď AutpT q be a closed subgroup and suppose that G does not

stabilise any proper non-empty subtree, or fix an end of T . If G satisfies Property

Pk, then G`k has the closed range property.

Some nice corollaries concerning (generalised) universal groups and groups acting

on trees with semiprimitive locally action stem from this result.

Another combinatorial structure that is of interest to us, and is more general than

trees, is the notion of a building. Buildings are simplicial complexes with certain

symmetry properties and were originally introduced by Jacque Tits as a means of

classifying certain algebraic groups. The automorphism groups of certain types

of buildings, such as semi-regular right-angled buildings, form another class of

compactly generated t.d.l.c. groups (provided that the building is locally finite)

and hence are another interesting class of groups to study in the theory of t.d.l.c.

groups. In Chapter 6 we give a brief overview of some recent work on automor-

phism group of semi-regular right-angled buildings as well as a generalisation of the

Universal groups construction for these buildings. The article concludes in Chapter

7 where we initiate the study of the contraction group and closed range properties

for automorphism groups of buildings.



CHAPTER 2

Preliminaries

In this chapter we give a brief overview of the graph theory and group theory

knowledge required in this article. This also gives us a chance to lay out the

notation that will be used in the sequel.

2.1. Graphs and Group Actions

By a graph, we mean a pair Γ “ pV Γ, EΓq, where V Γ is the collection of vertices,

and EΓ is the collection of edges of the graph Γ. The edges are unordered pairs

of vertices from V Γ i.e. we will be considering undirected graphs. We also assume

that our graphs are simple, meaning they do not contain loops or double edges, and

they are connected. A tree is a connected graph with no cycles. A vertex of a graph

is said to be a leaf if it has valency 1, that is, has only 1 edge connected to it, and a

graph is called locally finite if every vertex has only finitely many edges connected

to it. The regular tree of valency d, denoted Td, is the infinite tree with the property

that every vertex has d adjacent vertices, where two vertices are adjacent if they

have an edge connecting them.

A path in an infinite graph Γ is a sequence of vertices pviqiPI Ď V Γ, where I is

some (at most countable) indexing set, vi is adjacent vi`1, and vi ‰ vi`2 for all

i P I. We call a path a ray if I “ N and a bi-infinite path if I “ Z. An end

of an infinite graph is an equivalence class of rays, where two rays are considered

equivalent if their intersection is also a ray. The set of all ends of an infinite graph

Γ is called the boundary of Γ and is denoted by BΓ. The distance between two

vertices u, v P V Γ for some graph Γ will be denoted by dΓpu, vq and is defined by

the number of edges on a shortest path between the two vertices u and v. We will

drop the subscript and merely write dpu, vq if it is clear from the context what graph

we are measuring the distance in. For v P V Γ, we define the ball and sphere of

5



6 2. PRELIMINARIES

radius n as Bpv, nq “ tu P V Γ|dΓpu, vq ď nu and Spv, nq “ tu P V Γ|dΓpu, vq “ nu

respectively.

Throughout this article we will mainly be discussing infinite locally-finite trees and

groups acting on them in a certain ways. We will denote the group of all graph

automorphisms of the graph Γ by AutpΓq.

Given a group G acting on a graph Γ, for any subset Y Ď Γ, GY denotes the

stabiliser subgroup of Y under the action of G, that is, the subgroup of G consisting

of all elements g P G satisfying gY “ Y . If Y “ tyu is a singleton set, we will just

write Gy instead of Gtyu. Similarly, FixGpY q denotes the fixator of the set Y under

the action of G, the subgroup of all elements g P G satisfying gy “ y for all y P Y .

The notation SympXq will be used throughout to denote group of all permutation

of the set X.

2.2. Totally Disconnected Locally Compact Groups

A topological group is a group G with a topology such that the maps:

GˆGÑ G, pa, bq ÞÑ ab

GÑ G, a ÞÑ a´1

are continuous with respect to the topology. It is easy to check from the defini-

tion of a topological group, that the map G Ñ G, h ÞÑ gh for a fixed g P G is

a homeomorphism of G. As a result of this, topological properties of topological

groups are typically determined by what happens in a neighbourhood of the iden-

tity. A totally disconnected locally compact groups is a topological group whose

topology is totally disconnected, that is, the connected components are singleton

sets, or equivalently, the connected component of the identity is a singleton, and

locally compact, meaning there is a compact neighbourhood of the identity. We will

abbreviate totally disconnected locally compact as t.d.l.c. throughout this article.

As already discussed in the introduction, very little was known about t.d.l.c. groups

for quite some time. Until the 90’s, the only major result known about t.d.l.c. groups
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was the following theorem by van Dantzig from 1936 [vD36] which is referred to

as van Dantzig’s Theorem:

Theorem 2.1 (van Dantzig). A totally disconnected group admits a basis at the

identity of compact open subgroups

Since the basis of a topological group is determined by a basis at the identity, this

means that every t.d.l.c. group admits a basis of compact open subgroups which

are cosets of the above compact open subgroups. As a remark, every compact open

subgroup of a t.d.l.c. group is a compact totally disconnected group, also known as

a profinite group, that is, an inverse limit of finite groups. Profinite groups, which

posses many similar properties to finite groups, are well understood examples of

t.d.l.c. groups, for example, see [RZ10, Wil99] for more details.

As mentioned in the introduction, an important part of the current study of t.d.l.c.

groups is the study of automorphism groups of connected infinite locally finite

graphs. Given a graph Γ, we can endow its automorphism group AutpΓq with the

permutation topology. The permutation topology is defined as having basis of open

sets B “ tUpg, F q | g P AutpΓq, F Ď V Γ finiteu where Upg, F q “ th P AutpΓq |

gpvq “ hpvq for all v P F u. We remark that the permutation topology also agrees

with the topology of uniform convergence on compact sets and the compact open

topology on AutpΓq more typically seen in an introductory topology course. When

Γ is connected and locally finite, AutpΓq becomes a topological group, and infact a

t.d.l.c. group as we will soon show:

Proposition 2.2. Let Γ be a locally finite connected graph. Then AutpΓq is a

topological group with the permutation topology.

Proof. We just need to show that the product and inversion maps are con-

tinuous. First we show that the product map is continuous. To do this, let

α, β P AutpΓq and F Ď V Γ a finite subset of vertices. It is suffice to show that

there exists F 1, F 2 Ď V Γ finite such that Upα, F 1qUpβ, F 2q Ď Upαβ, F q. Clearly,

taking F 1 “ βpF q and F 2 “ F satisfies this. Hence the product map is continuous.

Similarly, to show that the inversion map is continuous, given F Ď V Γ finite, we

need to show that there exists F 1 Ď V Γ finite such that Upα, F 1q´1 Ď Upα´1, F q.
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Taking F 1 “ α´1pF q does the job, since if β P Upα, F 1q i.e. β agrees with α on

α´1pF q, then β´1 must agree with α´1 on F i.e. β´1 P Upα´1, F q. �

With this topology, the vertex stabilisers in the automorphism group of Γ become

compact open subgroups of the automorphism group:

Proposition 2.3. Let Γ be a locally finite connected graph. For any v P V Γ,

AutpΓqv is a compact open subgroup of AutpΓq

Proof. We will just provide a sketch of the proof. Clearly AutpΓqv is open

since it is precisely the open neighbourhood Upid, tvuq. It just needs to be shown

that AutpΓqv is compact. Fix v P V Γ and take the group of permutations SympSpv, nqq.

This is a compact group for each n since Spv, nq is finite. Define a map Φ :

AutpΓqv Ñ
ś

ně1 SympSpv, nqq, α ÞÑ
ś

ně1 α|Spv,nq. Clearly this map is injective,

since if α|Spv,nq “ id for each n, then we must have α “ id.

Now, the image of Φ is closed in
ś

ně1 SympSpv, nqq, hence is a compact subgroup

of
ś

ně1 SympSpv, nqq since
ś

ně1 SympSpv, nqq is compact by Tychonoff’s theo-

rem. Let Φ1 be the map Φ with its codomain restricted to the image of Φ. This

is a bijection and it can be checked that it is an open map using the fact that

SympSpv, nqq has the discrete topology. Since every continuous bijection from a

compact space to a Hausdorff space is a homeomorphism, we see that the inverse

of Φ1 is a homeomorphism and hence so is Φ1. This completes the proof. �

As a result of the above proposition, we can now prove the following:

Proposition 2.4. Let Γ be a locally finite connected graph. Then AutpΓq is a

totally disconnected locally compact group.

Proof. It is easy to see that AutpΓq is locally compact using the previous

proposition: if α P AutpΓq and v P V Γ, then αAutpΓqv is a compact neighbourhood

of α.

We just need to show that AutpΓq is totally disconnected, and to do so, we will

show that the connected component of the identity is a singleton. It suffices to

show that for any open neighbourhood U of the identity and id ‰ g P U , we can
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write U as the union of two disjoint open sets U1 and U2 such that id P U1 and

g P U2.

Let F be a finite subset of V Γ such that Upid, F q Ď U . We may assume that

g R Upid, F q, since if this is not the case, we can replace F with F Y tvu where

v P V Γ and gpvq ‰ v and the property will then be satisfied. Set U1 “ Upid, F q.

We will construct U2 so that U1 X U2 “ H and U “ U1 Y U2. For each h P UzU1,

Uph, F q XU is an open neighbourhood of h contained in U disjoint from U1. Then

U2 “
Ť

hPUzU1
pUph, F qXUq satisfies the required properties for U2. This completes

the proof showing AutpΓq is totally disconnected.

�

Another result that will be useful to us later in the next chapter is the following,

which gives a criteria to determine when the permutation topology on AutpΓq or

one of its subrgoups is non-discrete:

Proposition 2.5. Let Γ be a locally finite connected graph and G ď AutpΓq a

closed subgroup with the subspace topology. The following are equivalent:

(i) The topology on G is non-discrete.

(ii) Gv is infinite for any v P V Γ.

(iii) For every v P V Γ and n P N, there exists an automorphism g P G such that

g |Bpv,nq“ id and g |Bpv,n`1q‰ id.

Proof. Clearly piiiq ùñ piiq. Now suppose that G is discrete. Then, for

v P V Γ, by Proposition 2.3, Gv is a compact open subgroup of G, and it is also

discrete since G is. Since every discrete compact space must be finite, we see that

Gv is finite. This shows that piiq ùñ piq by proving the contrapositive. To show

that piq ùñ piiiq we also prove the contrapositive. So suppose that piiiq does not

hold. Then there exists a vertex v P V Γ and an n P N such that any element of G

that fixes Bpv, nq is the identity. Then Upid, Bpv, nqq is an open set in G that only

contains the identity. Since tranlations are continuous in a topological group, we

see that all the singleton sets are open in G and hence G is discrete. �





CHAPTER 3

Groups Acting on Trees

In this chapter we aim to give the reader an overview of a number of different

examples of (non-discrete) compactly generated totally disconnected locally com-

pact groups acting on trees that are found in the literature. The section starts

by introducing the notion of a label-regular tree and their automorphisms groups

which were motivated by concepts studied in Tits’ well known paper [Tit70]. We

then proceed to discuss the class of universal groups UpF q and some of their prop-

erties, along with the Le Boudec groups GpF, F 1q, which are a generalisation of

the universal groups. The idea of a k-closure of an automorphism group of a tree

introduced by Banks-Elder-Willis in [BEW15] is discussed and we provide a proof

of a generalisation of Tits’ simplicity theorem here. We also briefly mention some

k-closure analogues for universal groups. The chapter concludes with an overview

of Neretin’s groups and some of their properties.

3.1. Label-regular Trees

Let T be an infinite locally finite tree without leaves and Ω be a collection of labels

of possibly infinite cardinality. Fix a labelling λ : V T Ñ Ω of the vertices of the

tree T . For v P V T , let Npvq denote the set of all vertices adjacent to v in T

and define a multiset Lpvq :“ tλpwq : w P Npvqu. We say that T is a label-regular

tree if the multiset Lpvq depends only on the value of λpvq, that is, if v1, v2 P V T

satisfy λpv1q “ λpv2q, then v1 and v2 both have the same number of neighbours

with each label. Following the terminology as used in [Tit70], the labelling is said

to be normal if λ is surjective and the group of label preserving automorphisms act

transitively on the sets λ´1pωq for ω P Ω.

Every label-regular tree is determined by a |Ω|ˆ |Ω| matrix in the following sense:

let T be a label-regular tree with normal labelling and let aij denote the number

11



12 3. GROUPS ACTING ON TREES

of vertices of label j adjacent to a vertex of label i, for i, j P Ω. Then a “ paijqi,jPΩ

is an |Ω|ˆ |Ω| matrix where each of the aij are non-negative integers and aij “ 0 if

and only if aji “ 0. This matrix determines T up to isomorphism, furthermore, the

graph Ga that has Ω as its vertex set and ti, ju is an edge if aij ‰ 0, is connected.

Conversely, for any matrix a “ paijqi,jPΩ such that each of the aij are non-negative

integers, aij “ 0 if and only if aji “ 0, and graph Ga connected, there is a label-

regular tree denoted Ta with labels in Ω and such that every vertex of label i has

aij neighbours of label j. Throughout the article, whenever we use the notation

Ta, we will assume that Ta is a label-regular tree and a is a square matrix that

determines the labelling on Ta.

The group of automorphisms AutpTaq of Ta is defined to be the group of all auto-

morphisms of the underlying tree that also preserve the labelling i.e. all the auto-

morphisms ϕ of the underlying tree that satisfy λpϕpvqq “ λpvq for all v P V Ta. We

will call a sequence of labels pωiqiPI Ď Ω, for some at most countable indexing set

I, compatible with the labelling on the tree Ta if there exists a path pviqiPI Ď V Ta
satisfying λpviq “ ωi for each i P I.

We will discuss automorphism groups of label-regular trees in a bit more detail in

the next chapter when we start looking at Cartan-like decompositions, but for now

we move on to looking at some other types of t.d.l.c. groups acting on trees.

3.2. Groups Acting on Trees with Prescribed Local Action

Take the regular tree Td of valency d and a set Ω “ t1, 2, . . . , du of d labels. For

v P V Td, let Epvq denote the set of edges in Td incident with v. At each vertex

v P V Td, assign a bijective labelling λv : Epvq Ñ Ω with the following property:

if v, w P V Td are adjacent vertices and e is the edge connecting v to w, then

λvpeq “ λwpeq. Then the labelling λ : ETd Ñ Ω defined such that λ|Epvq “ λv

for each v P V Td is a well defined labelling of the regular tree Td called the legal

labelling of Td. Each edge e P ETd is assigned a unique label λpeq, and each vertex

in Td is incident with an edge of each label in Ω. For example, pictured below is a

ball of radius 3 in the 3-regular tree with a legal labelling:
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Now, given any automorphism α P AutpTdq, notice that at each vertex v P V Td,

α induces a permutation of the labels of the edges incident with v: for any edge

e P Epvq, the label λvpeq is sent to λαpvqpαpeqq. This is clearly a permutation of the

labels of the edges in Epvq by definition of the labelling and using the fact that α is

an automorphism. Let σpα, vq P Sympdq denote this permutation induced by α on

the labels of the edges in Epvq. The permutation σpα, vq can be defined explicitly

as:

σpα, vq :“ λαpvq ˝ α ˝ λ
´1
v

This permutation is referred to as the local action of α at the vertex v. We may

now define the notion of a universal group:

Definition 3.1 (Universal Group). Let λ : ETd Ñ Ω be a legal labelling of Td and

F ď Sympdq. The universal group on F with respect to the labelling λ, denoted

U pλqpF q, is defined as U pλqpF q “ tα P AutpTdq | σpα, vq P F for all v P V Tdu.

We remark that if we have two distinct legal labellings λ1 : ETd Ñ Ω and λ2 :

ETd Ñ Ω of Td, it can be shown that the universal groups U pλ1qpF q and U pλ2qpF q

are conjugate as subgroups of AutpTdq and hence isomorphic. Thus the group

U pλqpF q does not depend on the choice of legal labelling λ, so from now on we will

just refer to the universal groups as UpF q and not depending on a specific legal

labelling.
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We say that the local action of the automorphisms in UpF q is prescribed by F . It

may not be immediately obvious that a universal group is a group: this follows

from the fact that σpαβ, vq “ σpα, βpvqqσpβ, vq and σpα´1, vq “ σpα, α´1pvqq´1

which the reader may like to check.

Now, a group of automorphisms H ď AutpTdq is called locally permutationally

isomorphic to F ď Sympdq, if for every v P V Td, the action of Hv on Epvq is

isomorphic to the action of F on t1, 2, . . . , du. The term ’universal’ then comes from

the fact that the universal group UpF q is the largest closed subgroup of AutpTdq

that is locally permutationally isomorphic to F (up to isomorphism). For a proof

of this fact, see [CM18, Proposition 6.23].

The following proposition summarises some of the basic properties of universal

groups:

Proposition 3.2. Let F ď Sympdq. The following properties hold:

(i) UpF q is closed in AutpTdq.

(ii) UpF q acts transitively on the vertices of Td
(iii) UpF q acts transitively on the edges if and only if F acts transitively on Ω.

(iv) UpF q is discrete if and only if F acts freely on Ω.

(v) UpF q is compactly generated.

Proof. To prove piq, we show that the complement AutpTdqzUpF q is open. Let

g P AutpTdqzUpF q. Then there exists a vertex v P V Td such that σpg, vq R F . Note

that any automorphism in AutpTdq that agrees with g on Npvq is not contained

in UpF q since it has the same local action as g at v. Thus Upg,Npvqq is an open

set containing g and is contained in AutpTdqzUpF q. Since this holds for every

g P AutpTdqzUpF q, we see that AutpTdqzUpF q is open. Thus UpF q must be closed.

piiq: Let v, v1 P Td. We construct inductively an automorphism α P UpF q such that

αpvq “ v1. First define α as mapping v to v1. Then for every u P Npvq, define

αpuq as the unique vertex adjacent to αpvq such that λptv, uuq “ λptαpvq, αpuquq.

Now suppose that α has been defined on Bpv, nq for some n P N. Given w P V Td
at distance n ` 1 from v, let w1 be the unique vertex adjacent to w on the path

between v and w. Define αpwq to be the unique vertex adjacent to αpw1q such
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that λptw1, wuq “ λptαpw1q, αpwquq. Such a vertex exists since there is a bijection

between the labels on the edges adjacent to αpw1q and the labels on the edges

adjacent to w1. Thus we have defined an automorphism α mapping v to v1 whose

local action at each vertex is the identity. This proves piiq.

piiiq: First suppose that UpF q acts transitively on the edges of Td. Let ω1, ω2 P Ω

and fix a vertex v P V Td. Let e1, e2 P Epvq such that λpeiq “ ωi for i “ 1, 2. By

assumption, there exists an automorphism α P UpF q such that αpe1q “ αpe2q, in

particular, σpα, vqpλpe1qq “ λpe2q. Thus σpα, vq is an element of F and maps ω1 to

ω2. Since ω1 and ω2 were arbitrary, we see that F is transitive on Ω.

Conversely, suppose that the action of F is transitive on the set of labels, and let

e, e1 P ETd be two distinct edges. Suppose e “ tv, wu and e1 “ tv1, w1u for some

v, v1, w, w1 P V Td. If λpeq “ λpe1q, by the proof of (ii), there exists an α P UpF q

such that αpvq “ v1 and λpeq “ λpαpeqq for all e P ETd, in particular, we must have

that αpeq “ e1. So assume that λpeq ‰ λpe1q. We show that there is a β P UpF qv1

such that βpαpeqq “ e1, where α P UpF q is the automorphism constructed in the

proof of piiq mapping v to v1 and preserving the labelling. We define β inductively.

First set βpv1q “ v1. Let σ P F be such that σpλpeqq “ λpe1q. Define β on Npvq so

that σpβ, vq “ σ. Then β may be extended inductively to the whole of Td so that

σpβ, vq “ σ for all v P V Td. It then follows that β ˝ α P UpF q and pβ ˝ αqpeq “ e1.

pivq: First suppose that the action of F is not free. Then there exists an ω P Ω and

a non-trivial element g P Fω. Now fix a vertex v P V Td and choose an infinite path

P “ pviq8i“1 in Td starting at v that contains an infinite number of edges of label m.

Define αn P UpF q (n P N) to be the automorphism that fixes v and such that the

local action at the first n vertices of P, incident to an edge of label ω, is g, and the

local action is trivial for the remainder of the vertices on P. Then tαnu
8
n“1 is an

infinite sequence of distinct automorphisms in UpF qv and so UpF q is non-discrete

by Proposition 2.5.

Conversely suppose that UpF q is non-discrete. By Proposition 2.5 there exists

an α P UpF qv such that α |Bpv,nq“ id and α |Bpv,n`1q‰ id. Thus there exists a

x P Spv, nq such that σpα, xq ‰ id but σpα, xq has a fixed point, hence, the action

of F is not free. This completes the proof of pivq.
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pvq We will just give an outline of the proof. First, fix a vertex v P V Td and let

e1, e2, . . . , ed P ETd be the edges incident with v such that ei is the unique such

edge with label i. Then for each ei, there is a unique automorphism αi P UpF q that

inverts the edge ei while preserving the labelling of the tree. Now, each of the αi

are contained in Uptiduq. It can be checked, with the help of the ping-pong lemma

from geometric group theory, that Uptiduq – xα1y˚xα2y˚¨ ¨ ¨˚xαdy. Then, we claim

that the set UpF qv Y tα1, α2, . . . , αqu generates UpF q. Indeed, let α P UpF q and

choose β P Uptiduq such that βαpvq “ v; such an element exists since Uptiduq is

vertex-transitive. Then βα P UpF qv and it follows that α is in the group generated

by UpF qv Y tα1, α2, . . . , αdu. Since UpF qv Y tα1, α2, . . . , αdu is the union of two

compact sets, it is compact, hence we see that UpF q is compactly generated. �

As mentioned in the introduction to this article, we are particularly interested in

studying and understanding the structure of totally disconnected locally compact

groups, and understanding particular examples of totally disconnected locally com-

pact groups such as automorphism groups of trees is an important part of the

theory. The universal groups UpF q also form another example of a class of totally

disconnected locally compact groups since they are a closed subgroup of the totally

disconnected locally compact group AutpTdq. We summarise the results so far in

the following proposition:

Proposition 3.3. Let F ď Sympdq. The group UpF q ď AutpTdq is a compactly

generated, totally disconnected, locally compact Hausdorff topological group. Fur-

thermore, UpF q is discrete if and only if F acts freely on Td.

3.2.1. Simplicity Results for Universal Groups. Here we give an outline

of some simplicity results for universal groups. We first start by recalling some

work of Tits in [Tit70] that gives a condition for when a group of automorphisms

acting on a tree is simple. First we describe Tits’ independence property which is a

vital part of understanding Tits’ simplicity theorem. Tits’ independence property

is often referred to as Property P in the literature.

Start by letting G be a group of automorphisms of an infinite locally finite tree T

without leaves, and P be a path in the tree T of either finite or infinite length.
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Define a function πP : V T Ñ V P such that πPpvq, for v P V T , is the unique

closest vertex on the path P to v. For each vertex v on the path P, let Fv be the

restriction of FixGpPq to the subtree π´1
P pvq. Then there is a natural map:

ΦP : FixGpPq ãÑ
ź

vPV P
Fv

which essentially describes an automorphism in FixGpPq by what it does on the

subtrees π´1
P pvq (v P V T ). We say that the group G has Property P , or Tits’

Independence Property, if the map ΦP given above is an isomorphism for every

finite or infinite path P in T .

Denote by G` the subgroup of G generated by the fixators of edges in T i.e.

G` “ xGe | e P V T y. The following Theorem was proven by Tits’ in his article

[Tit70]; we do not give a proof of the result here, though, a more general result is

proven later in this chapter. This Theorem is often referred to as Tits’ Simplicity

Theorem.

Theorem 3.4. Let T be a tree and G a subgroup of AutpT q. Suppose that G

does not stabilise any non-empty subtree or fix an end of T , and satisfies Property

P . Then every non-trivial subgroup of G normalised by G` contains G`, and in

particular, G` is either simple or trivial.

It is easy to show that the universal groups UpF q do not stabilise any non-empty

subtree or fix any end of Td and satisfy Property P . As a result of Tits’ Simplicity

Theorem, the following result can be deduced about the simplicity of subgroups of

universal groups, which was first stated in the original paper on universal groups

by Burger and Mozes [BM00].

Theorem 3.5. Let F ď Sympdq. The following results hold:

(i) The group UpF q` is either simple or trivial

(ii) UpF q` has finite index in UpF q if and only if F is transitive and generated by

point stabilisers, and in this case, UpF q` “ UpF q X AutpTdq` and has index

2
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3.3. Groups Acting on Trees with Almost Prescribed Local Action

In this section we give a recount of the groups studied by Le Boudec in his paper

[LB16]. These groups, often referred to as Le Boudec’s groups, are groups of

automorphisms of a regular tree which generalise the universal groups construction:

the requirement that the local actions of each of the automorphisms have to be

contained in the subgroup F is slightly weakened. The definition of Le Boudec’s

groups is given as follows:

Definition 3.6. Let F, F 1 ď Sympdq such that F ď F 1. Retaining the notation

used in the previous section, define the groups GpF q “ tα P AutpTdq | σpα, vq P

F for all but finitely many v P V Tdu and GpF, F 1q “ GpF q X UpF 1q.

The group GpF, F 1q is precisely the group of all automorphisms of Td such that

σpα, vq is in F 1 for all v P V Td and in F for all but finitely many v P V Td. These

groups can be thought of as a ‘relaxation’ of the requirements for the local action

in comparison to the universal groups. In the following, for α P GpF, F 1q, we will

say that a vertex v P V Td is a singularity of α if σpα, vq R F . The collection of all

singularities of α is denoted by Spαq.

The attentive reader may have already noticed that the groups GpF, F 1q in many

cases will not be closed, and hence also not open in AutpTdq. Thus we do not give

these groups the subspace topology from AutpTdq. To understand the topology on

these groups, we prove the following result:

Proposition 3.7. Let G be an abstract group with a topological group H as a

subgroup. Then G admits a unique group topology such that the inclusion map

H ãÑ G is continuous and open provided that for all open sets U Ď H, gUg1 XH

is open in H for all g, g1 P G.

Proof. We show that the topology T on G generated by the left G-translates

of open sets in H satisfies the desired properties. It is easy to see that the left

G-translates of open sets in H form a basis for a topology on G and the inclusion

map is continuous and open with respect to this topology. It just needs to be shown

that the multiplication and inversion maps in G are continuous with respect to this

topology.
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To do this, we first show that the translations maps Lg : G Ñ G, x ÞÑ gx and

Rg : GÑ G, x ÞÑ xg´1 for g P G are homeomorphisms. It is clear that these maps

are bijections since Lg´1 is the inverse of Lg and similarly for Rg. Thus it suffices

to show that the maps Lg and Rg are open for any g P G. It is clear that Lg is an

open map by definition of the topology. To show that Rg is also open, note that

for any open set U Ď H, for g1 P G, Ug1 can be written as:

Ug1 “
ď

gPG

gH X Ug1 “
ď

gPG

gpH X g´1Ug1q

which is a union of left translates of open sets of H and hence is open in the given

topology on G. Thus it follows that Rg is also open and hence Lg and Rg are

homeomorphisms. To complete the proof of the proposition, it will now be shown

that the multiplication and inversion maps in G are continuous.

Let pgiqiPI and pg1iqiPI be two nets in G converging to g, g1 P G respectively. Then

since gH and Hg1 are open neighbourhoods of g and g1 respectively, we may find

nets phiqiPI and ph1iqiPI both converging to the identity such that gi “ ghi and

g1i “ h1ig for each i. It then follows that the net gig
1
i “ ghih

1
ig
1 converges to

gg1 since hih
1
i converges to the identity in H. In a similar fashion, g´1

i “ h´1
i g´1

converges to g´1 in G since h´1
i converges to the identity in H. Thus this shows that

the multiplication and inversion maps are continuous and hence G is a topological

group with this topology. �

Since the subgroups of the form UpF qT for some finite subtree T Ď Td form a

neighbourhood basis of the identity in UpF q, and for any g P AutpTdq, gUpF qT g´1 “

UpF qgpT q, it is easily seen that the groups GpF, F 1q satisfy the hypotheses of the

above proposition with H “ UpF q.

The groups GpF, F 1q are then given the topology such that the inclusion map of

UpF q into GpF, F 1q is continuous and open. Thus, the collection of open neigh-

bourhoods of the identity in UpF q form a collection of open neighbourhoods of the

identity in GpF, F 1q. In particular, it follows from the results for universal groups

discussed in the previous section that GpF, F 1q is also a totally disconnected locally

compact group and is discrete if and only if F acts freely on Ω.
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The following lemma shows that even when an automorphism α P GpF q is not

contained in the universal group UpF q, the local action of α at each vertex still

behaves ‘reasonably’ nicely. The proof follows the one given in [LB16], as will a

number of the other results in this section.

Proposition 3.8. Given any α P GpF q and v P V Td, the permutation σpα, vq

stabilises the orbits of F acting on the set t1, 2, . . . , du.

Proof. Let α P GpF q and let Vα denote the set of all vertices for which the

statement does not hold. Note that every vertex in Vα is a singularity of α. Suppose

for a contradiction that Vα is non-empty and let v P Vα. Then there must exist

at least two vertices v1, v2 P V Td adjacent to v such that σpα, vq sends the labels

λptv, v1uq and λptv, v2uq to elements of different orbits. In a similar fashion, there

must exist another vertex v11 adjacent to v1 and distinct from v such that the label

of the edge tv1, v
1
1u is sent to a label in a different orbit. Continuing this argument

indefinitely shows that Vα must be infinite which contradicts the fact that α P GpF q

since α can have at most finitely many singularities. �

Given a partition of the set Ω, the Young subgroup with respect to the partition is

defined to be the maximal subgroup of Sympdq stabilising the sets in the partition.

Given a subgroup F ď Sympdq, one may consider the Young subgroup associated

to the partition of Ω into F -orbits, which we will denote by F̂ ď Sympdq. It is clear

that in this case F ď F̂ . For the remainder of this article we will always assume

that the permutation groups F and F 1 used in the definition of GpF, F 1q must be

contained in F̂ . There is no loss of generality in doing this, since by the previous

lemma, if the local action of an automorphism in GpF q at a particular vertex is not

in F , then it must be contained in F̂ .

We will need the following lemma in the proof of Proposition 3.10:

Lemma 3.9. Let F, F 1 ď Sympdq such that F ď F 1 ď F̂ . Fix v P V Td and n P N.

Suppose that β P AutpTdq such that σpβ,wq P F 1 for all w P Bpv, nq. Then there

exists an automorphism α P GpF, F 1q such that σpα,wq P F for all w P TdzBpv, nq,

and α and β agree on Bpv, n` 1q.
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Proof. Given x P Spv, nq, let Vx denote the set of vertices w P V Td such

that the unique path from v to w passes through x. We may assume that β fixes

the vertex v; if not, consider the automorphism β1 “ γβ where γ P UpF q is the

automorphism sending βpvq to v and whose local action at every vertex is the

identity.

First we define α to fix v. Then α is determined by its local action at each vertex

in Td, thus, it suffices to define σpα,wq for each vertex w P V Td. Start by defining

σpα,wq “ σpβ,wq for each w P Bpv, nq. Then for each vertex x P Spv, nq and

ω P Ω, since F 1 ď F̂ , choose a permutation θpω, xq P F (not necessarily unique)

such that σpβ, xqpωq “ θpω, xqpωq. Then given w P Vx, x P Spv, nq, define σpα,wq

to be θpω, xq where ω P Ω is the unique label on the edge with origin x which lies

on the path between x and w. It can be easily seen that this is a well defined

automorphism α satisfying the required properties. �

As a result of the preceding lemma, we can now prove the following result:

Proposition 3.10. Let F, F 1 ď Sympdq such that F ď F 1 ď F̂ . Then the following

properties hold:

(i) The closure GpF, F 1q of GpF, F 1q in AutpTdq is equal to UpF 1q

(ii) GpF q is dense in AutpTdq if and only if the action of F on Ω is transitive

Proof. For piq, first note that GpF, F 1q Ď UpF 1q, and since UpF 1q is closed

in AutpTdq, we must have that GpF, F 1q Ď UpF 1q. We just need to show that

UpF 1q Ď GpF, F 1q. Let α P UpF 1q. By the previous lemma, for each n P N, there

exists an automorphism αn P GpF, F
1q such that αn agrees with α on Bpv, nq and

σpαn, wq P F for each w P V TdzBpv, nq. Then the sequence pαnq
8
n“1 Ď GpF, F 1q

converges to α. Hence α P GpF, F 1q. This completes the proof of piq

For piiq, the reverse direction follows by applying piq and using the fact that F̂ “

Sympdq if F is transitive and UpSympdqq “ AutpTdq. Conversely, if the action of

F is not transitive then GpF q “ UpF̂ q is a strict subset of AutpTdq since F̂ is not

transitive. �
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This proposition confirms the fact mentioned earlier in the section that the groups

GpF, F 1q are not generally closed in AutpTdq. Indeed, GpF, F 1q is closed if and only

if it is equal to the universal group UpF 1q. This will be an interesting fact in relation

to material we look at later in the article. Similarly to universal groups, the groups

GpF, F 1q are also compactly generated. We give the proof of this result below, but

first we need to prove a short lemma. In the following, for v P V Td and n P N,

GpF, F 1qpv,nq denotes the set of all automorphisms in GpF, F 1q who fix the vertex

v and have all their singularities contained in Bpv, nq.

Lemma 3.11. Let F, F 1 ď Sympdq such that F ď F 1 ď F̂ . For any v P V Td and

n P N, the groups GpF, F 1qpv,nq are compact.

Proof. For a fixed v P V Td, since UpF qv is a compact open subgroup of

AutpTdq, it is also compact open in GpF, F 1qpv,nq for any n P N by definition of

the topology on GpF, F 1q. It can also be checked that UpF qv has finite index in

GpF, F 1qpv,nq for any n P N. Hence, we can write GpF, F 1qpv,nq as a finite union

of translates of UpF qv. Thus GpF, F 1qpv,nq is compact open in GpF, F 1q being the

finite union compact open sets. �

Proposition 3.12. Let F, F 1 ď Sympdq such that F ď F 1 ď F̂ . The groups

GpF, F 1q are compactly generated.

Proof. Given g P GpF, F 1q with at most m singularities, we claim that there

exists vertices v1, v2, . . . , vm P V Td, gi P GpF, F 1qpvi,0q for each i, and h P UpF q such

that g “ hg1g2 ¨ ¨ ¨ gm. We prove this by induction on m, the number of singularities

of g. If m “ 0, then g P UpF q and the result is clear. Now suppose that n P N and

the result holds for all m ă n, and suppose that g has n singularities. Let v P V Td
be a singularity of g. By vertex transitivity of UpF q, we may find an element

h P UpF q such that g1 “ hg fixes the vertex v. Since σph,wq P F for all w P V Td,

it is easy to see that g and g1 have the same singularities. By Lemma 3.9, there

exists k P GpF, F 1qpv,0q such that σpk, vq “ σpg1, vq. Then g2 “ g1k´1 “ hgk´1

fixes Bpv, 1q. Since k P GpF, F 1qpv,0q, the singularities of g2 are precisely all the

singularities of g1 different from v. Hence, g2 has at most n´1 singularities, and thus

by the induction hypothesis, there exists v1, v2, . . . , vn´1 P V Td, gi P GpF, F 1qpvi,0q
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for each i and h1 P UpF q such that g2 “ h1g1g2 ¨ ¨ ¨ gn´1. It then follows that

g “ h´1h1g1g2 ¨ ¨ ¨ gn´1k is in the desired form.

Now, since UpF q is vertex transitive and gGpF, F 1qpv,0qg
´1 “ GpF, F 1qpgv,0q for

any g P UpF q, we see that the group generated by UpF q and GpF, F 1qpv0,0q for a

fixed v0 P V Td contains GpF, F 1qpw,0q for every w P V Td. By the arguments in

the previous paragraph, this means that UpF q YGpF, F 1qpv0,0q generates GpF, F 1q.

Thus if K is a compact generating set for UpF q, which exists by Proposition 3.2,

then K YGpF, F 1qpv0,0q is a compact generating set for GpF, F 1q. �

We summarise the results of this section in the following proposition:

Proposition 3.13. Let F, F 1 ď Sympdq such that F ď F 1 ď F̂ . The groups

GpF, F 1q are compactly generated, totally disconnected, locally compact Hausdorff

groups. Furthermore, GpF, F 1q is discrete if and only if F acts freely on Ω.

Hence, this gives us more examples of (non-discrete) compactly generated, totally

disconnected locally compact groups.

3.3.1. A Simplicity Result for the Groups GpF, F 1q. In a similar fashion

to the simplicity result for universal groups, there are also some results concerning

simplicity of subgroups of Le Boudec’s groups GpF, F 1q under certain assumptions

on F and F 1. For the case of universal groups, the proof that the subgroups UpF q`

are simple uses the fact that the universal groups satisfy Tits’ Property P , and

then the result follows directly from Tits’ Simplicity Theorem. In a similar way, Le

Boudec uses a weaker version of Tits’ Property P for the groups GpF, F 1q, which he

calls the edge independence property. The edge independence property is obtained

by restricting the path to be a single edge in the definition of Property P . Using

some results concerning the edge-independence property, the following simplicity

result can be deduced, which can be found as Theorem 4.13 in [LB16]:

Theorem 3.14. Let F ď F 1 ď Sympdq. Suppose that F is transitive and F 1 “

xrF 1ω, F
1
ωs Y Fω | ω P Ωy. Then the group GpF, F 1q` is simple.

Also, define the group NpF, F 1q “ xrGpF, F 1qe, GpF, F
1qes | e P ETdy. Le Boudec

also gives a proof of the following result in [LB16]:
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Theorem 3.15. Let F ď F 1 ď F 2 ď Sympdq such that F 1 has index two in F 2

and the type-preserving subgroup of GpF, F 2q is simple. Then NpF, F 1q is a simple

subgroup of index eight in GpF, F 1q.

3.4. k-closures of Groups Acting on Trees

In the paper [BEW15], Banks-Elder-Willis provide another novel construction of

groups acting on trees. Given a group G acting on a tree T , they define, for each

k P N, the k-closure Gpkq of G which also acts as a group of automorphisms on

T , and in a sense captures the local action of G on balls of radius k in T . Tits’

Property P is also generalised in this paper which results in a more general version

of Tits’ simplicity theorem, and it is shown that under certain assumptions each

of the groups Gpkq has simple subgroups similar to what we discussed earlier for

universal groups. This work on k-closures also motivates a more general definition

of universal groups where the local action is prescribed on balls of radius k in T .

Here we give an overview of this work.

First we define what is meant by the k-closure of a group; throughout this section

we will be assuming that T is an arbitrary locally finite tree.

Definition 3.16. Let G be a group of automorphisms of a tree T . For fixed k P N,

the k-closure of G, denoted Gpkq, is defined as:

Gpkq “ tg P AutpT q | @v P V T , Dhv P G such that g|Bpv,kq “ hv|Bpv,kqu

The groups Gpkq are precisely all the automorphism of the tree T , such that on balls

of radius k around each vertex, they agree with an element of G. The k-closures of

a group G enjoy the following properties:

Proposition 3.17. Let T be a tree and G ď AutpT q. Then, for any k P N, the

following hold:

(i) G ď Gpkq for each k P N

(ii) Gpkq is a closed subgroup of AutpT q

(iii) Gplq ď Gpkq for all l ě k

(iv)
Ş

kPNG
pkq “ G
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(v) The orbit of v P V T under the action of Gpkq is equal to the orbit of v under

the action of G.

Proof. (i): This is clear since every automorphism g P G agrees with itself on

Bpv, kq for all v P V T .

(ii): We will show that the complement of Gpkq in AutpT q is open. For any g P

AutpT qzGpkq, there exists a vertex v P V T such that g does not agree with any

element of G on Bpv, kq. Thus Upg,Bpv, kqq is an open set that does not contain

any element of Gpkq i.e. Upg,Bpv, kqq Ď AutpT qzGpkq. Since this holds for any

g P AutpT qzGpkq, we see that AutpT qzGpkq is open and hence Gpkq is closed.

(iii): Let g P Gplq. For every vertex v P V T , there exists a gv P G such that g agrees

with gv on Bpv, lq. Then, clearly g agrees with gv on Bpv, kq since k ď l. Since this

holds for every vertex v P V T , we see that g P Gpkq.

(iv): By (i)G Ď Gpkq for each k, and by (ii)Gpkq is closed, henceG Ď Gpkq for each k.

Thus it follows that G Ď
Ş

kPNG
pkq. So it just remains to show that

Ş

kPNG
pkq Ď G.

To do this, we will show that for any g P
Ş

kPNG
pkq, every open set of g intersects

G non-trivially and hence it follows that g P G i.e.
Ş

kPNG
pkq Ď G. Indeed, if

g P
Ş

kPNG
pkq and U is open neighbourhood of g in AutpT q, then U must contain

Upg,Bpv, kqq for some v P V T and k P N since B “ tUpg,Bpv, kqq | v P V T , k P Nu

forms a basis for the topology on AutpT q. But Upg,Bpv, kqq contains an element

of G since g P Gpkq. Hence U intersects G and this proves (iv).

(v): Since G ď Gpkq, the orbit Gv is contained in Gpkqv. Conversely, if v1 P Gpkqv,

then there exists an automorphism g P Gpkq that maps v to v1. Then, by definition

of the group Gpkq, there is an automorphism in G that agrees with g on Bpv, kq i.e.

there must exist an automorphism in G that maps v to v1. Hence Gpkqv Ď Gv and

the result follows. �

Just like the previous groups we have looked at in this article, the k-closures are

non-discrete under certain circumstances. The proof of the following theorem can

be found in the paper by Banks-Elder-Willis.
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Theorem 3.18 ([BEW15]). Let T be a tree and G ď AutT . Fix k P N and

suppose that G does not stabilise any non-empty proper subtree of T . Then Gpkq is

non-discrete if and only if there is an edge pv, wq P ET and g P G such that:

g |Bpv,kqXBpw,kq“ 1 and g |Bpw,kq‰ 1

Equivalently, Gpkq is discrete if and only if FixGpBpv, kqXBpw, kqq “ t1u for every

pv, wq P ET .

This theorem has a number of corollaries which can be found in [BEW15] that give

relations between the properties of a group G and its k-closure Gpkq. We now move

on to discuss some independence properties that will be used later in the article.

3.4.1. Independence Properties and Simple Subgroups. Earlier in this

chapter we briefly discussed Tits’ Property P and saw his simplicity theorem that

says that any group acting on a tree satisfying Property P and not stabilising

any proper non-empty subtree or fixing an end of the tree has a simple subgroup

G`. Here we give an overview of two other independence properties, Property

IPk and Property Pk, for groups acting on trees, and prove a generalisation of

Tits’ Simplicity Theorem. These results also have consequences in the context of

k-closures of automorphism groups of trees. Once again, these results are from the

paper [BEW15].

First we give the definition of Property IPk which is a special case of Property Pk

that will be defined shortly:

Definition 3.19 (Property IPk). Let T be a tree and G ď AutpT q. Fix k P N and

let e “ pv, wq P ET . Define

Fk,e :“ FixGpBpv, kq XBpw, kqq.

Then G satisfies Property IPk if for every edge e “ pv, wq P ET ,

Fk,e “ FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq
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where we recall that Tpv,wq and Tpw,vq are the semi-trees containing w and v respec-

tively obtained from T by removing the edge pv, wq.

When k “ 1, Property IPk is just Tits’ Property P with the path P replaced

by a single edge. This is precisely what Le Boudec called the edge independence

property that we discussed in the previous section of this chapter and was used to

prove some simplicity results for the groups GpF, F 1q.

We note that the k-closure of a group acting on a tree always satisfies Property

IPk:

Proposition 3.20. Let G ď AutpT q and k P N. Then Gpkq satisfies Property IPk.

Proof. Fix an edge e “ pv, wq P ET . Since FixFk,e
pTpv,wqq and FixFk,e

pTpw,vqq

both fix Bpv, kq X Bpw, kq, it follows that FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq does to.

Hence FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq Ď Fk,e. Thus we just need to show that Fk,e Ď

FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq.

Let g P Fk,e. Define an automorphism g1 of T by g1 “ g on Bpu, kq for every

u P V Tpw,vq and trivial on Bpu, kq for every u P V Tpv,wq. Then g1 P FixFk,e
pTpv,wqq Ď

Gpkq. Similarly define an automorphism g2 by g2 “ g on Bpu, kq for every u P

V Tpv,wq and trivial on Bpu, kq for every u P V Tpw,vq. Then g2 P FixFk,e
pTpw,vqq and

g “ g1g2. Thus g P FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq which completes the proof. �

We now give the definition of Property Pk, which is a generalisation of Tits’ Prop-

erty P discussed earlier in this Chapter. It will be seen shortly that groups satisfying

Property Pk that do not stabilise any proper subtree or fix an end of T have a simple

subgroup G`k similar to the case of groups satisfying Property P . In the following,

given a subtree T Ď T , T k will denote the subtree of T spanned by the vertices at

distance at most k from T .

Definition 3.21 (Property Pk). Let G ď AutpT q and P a path in T either of finite

or (bi-)infinite in length. Let πP be the nearest point projection of V T onto V P as

defined earlier, and denote by Fpk´1,vq, for v P V P, the restriction of FixGpPk´1q

to π´1
P pvq. Then we say that G has Property Pk if the canonical homomorphism

ΦP : FixGpPk´1q ãÑ
ś

vPV P Fpk´1,vq is an isomorphism for every path P in T .
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We now show that for closed subgroups of AutpT q, Property Pk is in fact equivalent

to Property IPk. Maintaining the notation used in the previous definition, we first

prove the following lemma:

Lemma 3.22. Let G ď AutpT q and suppose that G satisfies Property IPk. Let P

be a finite path in T . Then the canonical map ΦP : FixGpPk´1q ãÑ
ś

vPV P Fpk´1,vq

is an isomorphism.

Proof. The proof is by induction on the length of the path P. If the length of

P is one, then since G satisfies Property IPk, this implies that ΦP is an isomorphism

by definition.

Now suppose that the result holds for all paths of length less than or equal to m´1

and suppose that P has length m. It is clear that ΦP is injective, it just needs

to be shown that ΦP is surjective. Let v1, v2, . . . , vm denote the vertices on the

path P and let
śm
i“1 gi P

śm
i“1 Fpk´1,viq where gi P Fpk´1,viq for i “ 1, . . . ,m. Let

P 1 denote the path P with the vertex vm and the adjoining edge removed, and

ΦP 1 : FixGppP 1qk´1q Ñ
ś

vPV P 1 Fpk´1,vq the canonical homomorphism.

Define g̃ to agree with gm´1 on π´1
P pvm´1q, gm on π´1

P pvmq and the identity else-

where. By the induction hypothesis, there exists g P FixGppP 1qk´1q such that

ΦP 1pgq “ g1g2 ¨ ¨ ¨ gm´2g̃. Since g agrees with gm on π´1pvmq, g fixes Pk´1 and

hence g P FixGpPk´1q. Also ΦPpgq “
śm
i“1 gi which completes the proof. �

Proposition 3.23. Let G ď AutpT q be a closed subgroup. Then G satisfies Prop-

erty IPk if and only if G satisfies Property Pk.

Proof. It is clear that if G satisfies Property Pk then G satisfies Property IPk.

So we just need to prove that if G satisfies Property IPk then it satisfies Property

Pk. By the previous lemma, it just remains to be shown that ΦP : FixGpPk´1q Ñ

ś

vPV P Fpk´1,vq is an isomorphism for every infinite path P Ď T .

So suppose that P is an infinite path, and lets assume that it is bi-infinite; the proof

is essentially the same for when P is a ray. Let pviqiPZ be the vertices on the path P

and denote by Pn the path from v´n to vn. To prove the proposition, we just need

to show that ΦP is surjective. Let
ś

iPZ gi P
ś

vPV P Fpk´1,vq where gi P Fpk´1,viq

for each i. We need to find g P FixGpPk´1q such that ΦPpgq “
ś

iPZ gi.



3.4. k-CLOSURES OF GROUPS ACTING ON TREES 29

The previous lemma gives is a sequence of elements tg̃nunPN, g̃n P FixGppPnqk´1q

for each n, such that ΦPn
pg̃nq “ g1´ng´n`1 ¨ ¨ ¨ gn´1g

1
n, where g1n (resp. g1´n) denotes

the automorphism of π´1
Pn
pvnq (resp. π´1

Pn
pv´nq) that agrees with gi on πPpviq for

i ě n (resp. i ď ´n). By closedness of G, there exists g P FixGpPk´1q such

that g̃n Ñ g. Since ΦPn
pg̃nq agrees with ΦPpgq on π´1

P pviq for ´n ď i ď n, we

must have that ΦPn
pg̃nq Ñ ΦPpgq as n Ñ 8. But ΦPn

pg̃nq Ñ
ś

iPZ gi, hence,

ΦPpgq “
ś

iPZ gi which completes the proof. �

Thus, this proposition shows that for closed subgroups of AutpT q, to check that the

subgroup satisfies Property Pk, we just need to check that ΦP is an isomorphism

whenever the path P is an edge in T .

3.4.2. An Interlude on Some Work of Tits’. For use in the proof of

the simplicity theorem, and for use in later chapters of this article, we recall the

following results of Tits’ concerning group acting on trees without stabilising any

proper non-empty subtree or fixing any end. The first result is Lémmè 4.4 in

[Tit70]:

Lemma 3.24. Suppose that N and G are non-trivial subgroups of AutpT q and N

is normalised by G. If G does not stabilise any non-empty subtree or fix any end

of T , then the same is true for N .

The following result is Lémmè 4.1 in [Tit70]:

Lemma 3.25. Let G ď AutpT q. The following are equivalent:

(i) G does not stabilise any proper non-empty subtree of T .

(ii) The orbit Gv of any vertex v P V T has non-empty intersection with any

semi-tree in T .

The following proposition, which can be found as Proposition 3.4 in Tits’ article,

will also come in handy:

Proposition 3.26. If G ď AutpT q contains no translations, then G is contained

in either the stabiliser of a vertex, the stabiliser of an edge or the fixator of an end.
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3.4.3. A Generalisation of Tits’ Simplicity Theorem. We now finish the

section by giving a proof of a generalised version of Tits’ simplicity theorem seen

in [BEW15]. We will follow the proof given by Banks-Elder-Willis. The proof is

essentially repeating the proof of Tits’ original simplicity theorem seen in [Tit70],

however, with this more general k-closure notation substituted. First we prove the

following lemma which is an analogue of [Tit70, Lémmè 4.3]:

Lemma 3.27. Let G ď AutpT q be a closed subgroup and suppose that g P G is a

translation along a bi-infinite path P. Let K be the fixator of Pk´1 in G. Then, if

G satisfies Property Pk, K “ rg,Ks “ tgkg´1k´1 : k P Ku.

Proof. Since g is a translation along P, g stabilises Pk setwise, hence, gkg´1 P

K for all k P K. This means that rg,Ks Ď K. To show the other inclusion, let

k P K. We will show that there exists a k1 P K such that k “ gk1g´1k1´1. Using

the notation as in Definition 3.21, and identifying V P with Z, since G satisfies

Property Pk we may write k “
ś

iPZ fi where fi P Fpk´1,iq for each i.

We define k1 by finding k1i P Fpk´1,iq for each i so that k1 “
ś

iPZ k
1
i satisfies the

required equality. For i P Z, let αi : Fpk´1,iq Ñ Fpk´1,i`dq be the automorphism

induced by conjugating by g, where d denotes the distance that g translates the

path P. We define the k1i inductively. For 0 ď i ď d ´ 1, choose k1i P Fpk´1,iq

arbitrarily. If i ě d define k1i “ k´1
i αi´dpk

1
i´dq and if i ă 0 k1i “ α´1

i pfi`dgi`dq. �

To be used in the following theorem, we make the following definition:

Definition 3.28. Let G ď AutpT q and fix k P N. For e “ tv, wu P ETd let Fk,e :“

FixGpBpv, kq XBpw, kqq. We define the subgroup G`k by G`k :“ xFk,e | e P ET y.

We finally come to the generalisation of Tits’ Simplicity Theorem:

Theorem 3.29. Fix k P N and let G ď AutpT q such that G does not stabilise any

proper non-empty subtree or an end of T , and satisfies Property Pk. Then every

nontrivial subgroup of G normalised by G`k contains G`k . In particular, G`k is

either simple or trivial.

Proof. Assume the hypotheses of the Theorem and let H be a nontrivial

subgroup of G normalised by G`k . Since G satisfies Property Pk, for every edge
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e “ tv, wu P ET , Fk,e :“ FixGpBpv, kq X Bpw, kqq “ FixFk,e
pTpv,wqqFixpTpw,vqq.

To prove the theorem, we just need to show that for every edge e “ tv, wu,

FixFk,e
pTpv,wqq Ď H and FixFk,e

pTpw,vqq Ď H, and it is suffice to solely show that

FixFk,e
pTpv,wqq Ď H since the other inclusion will follow from the same argument

by interchanging the roles of v and w.

Since G`k is normal in G, by Lemma 3.24 G`k does not stabilise any non-empty

subtree of T or fix any end of T . By Lemma 3.24 again, H also satisfies these

properties since H is normalised by G`k . Also, by Proposition 3.26, there is a non-

trivial translation h P H. Let P be the bi-infinite path along which h translates

and let ´8 and 8 denote the ends of P. We claim that P Ď Tpv,wq.

By Lemma 3.25, Hv X Tpv,wq ‰ H for all v P V P, hence, there is g P H with

gpPq X Tpv,wq ‰ H. Replacing P and h with gpPq and ghg´1 if necessary, we may

assume that P X Tpv,wq ‰ H. This intersection must be atleast an infinite path, if

not, a biinfinite path. Lets suppose that 8 is the end contained in P X Tpv,wq.

Since H does not fix any end of T , we may find f P H such that fp´8q R t´8,8u,

moreover, f´1pPq does not contain any representative of the end ´8. If π : V T Ñ

V P is the projection of T onto P, then either πpTpw,vqq is a single vertex if P Ă

Tpv,wq or an infinite path that forms a representative for the end ´8. Since f´1pPq

does not contain any representative of the end ´8, the projection πpf´1pPqq must

be contained in some representative of 8 that is also contained in P.

Let P̃ be the shortest representative of8 such that πpf´1pPqq Ď P̃ Ď P. Choose an

integer n such that hnpf´1pPq and πpTpw,vqq are distance k a part, and, moreover,

we may choose such an n so that hnpf´1pPqq Ď Tpv,wq. Then, by replacing P

and h by hnpf´1pPqq and hnf´1hfh´n, we may assume that P and Pk´1 are

contained in Tpv,wq. If K “ FixFk,e
pPk´1q, then K Ď G`k , and by the previous

lemma, K “ rh,Ks Ď H since H is normalised by G`k . Since Pk´1 Ď Tpv,wq,

FixFk,e
pTpv,wqq Ď K Ď H which completes the proof. �

3.4.4. A k-closures analogue of Universal groups. Motivated by this

work on k-closures by Banks-Elder-Willis, in [Tor20], among other work, Tornier

defines a generalised notion of universal groups where the local actions are defined
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on balls of radius k around each vertex instead of on balls of radius one like in the

standard case of universal groups. These groups, denoted by UkpF q, share a number

of similar properties with the universal groups discussed earlier in the chapter and

also satisfy Property Pk which will be useful to us later in the article. First we give

the precise definition of these groups and we will follow similar notation to that

used in [Tor20]:

Consider the regular tree Td with its legal labelling λ : ETd Ñ Ω as discussed

earlier in the case of universal groups. Denote by Bd,k a tree isomorphic to a ball

of radius k in Td with the corresponding legal labelling. Then there exists, for each

vertex v P V Td, a unique label preserving isomorphism λv,k : Bpv, kq Ñ Bd,k from

Bpv, kq Ď Td onto Bd,k. For each automorphism α P AutpTdq, its k-local action at

a vertex v P V Td is then defined as:

σkpα, vq :“ λαpvq,k ˝ α ˝ λ
´1
v,k

which can easily be seen to be an element of AutpBd,kq. The k-closure analogue of

the universal groups is then defined in the obvious way as:

Definition 3.30. Let F ď AutpBd,kq. The universal group UkpF q is defined as

UkpF q :“ tα P AutpBd,kq | σkpα, vq P F for all v P V Tdu.

We remark that in the case when k “ 1, we just have the usual definition of universal

groups. Similar to the standard universal groups, the groups UkpF q satisfy the

following properties:

Proposition 3.31. Fix k P N and let F ď AutpBd,kq. The following properties

hold:

(i) UkpF q is closed in AutpTdq

(ii) UkpF q is vertex-transitive

(iii) UkpF q is compactly generated.

Proof. The proof of parts (i) and (ii) is identical to the proof for universal

groups that we saw earlier. For (iii), first note that U1ptiduq Ď UkpF q. From

the proof of Proposition 3.2(v), recall that there exists α1, α2, . . . , αd P U1ptiduq Ď
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UkpF q such that U1ptiduq – xα1y˚xα2y˚¨ ¨ ¨˚xαdy. Then following a similar argument

to the proof of Proposition 3.2(v), it can be shown that UkpF qv Y tα1, α2, . . . , αdu

is a compact generating set for UkpF q. �

In particular, from the proposition, we see that the groups UkpF q are compactly

generated, totally disconnected locally compact groups. It is also worth noting for

use later that these groups also satisfy Property Pk:

Proposition 3.32. Let F ď AutpBd,kq and fix k P N. The group UkpF q satisfies

Property Pk.

Proof. Since UkpF q is closed, by Proposition 3.23, we just need to show that

UkpF q satisfies Property IPk. So let e “ tv, wu P ETd and Fk,e “ FixUkpF qpBpv, kqX

Bpw, kqq. It is easy to see that FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq Ď FixUkpF qpBpv, kq X

Bpw, kqq so we just need to show that FixUkpF qpBpv, kqXBpw, kqq Ď FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq.

To this end, let g P FixUkpF qpBpv, kq X Bpw, kqq. Define an automorphism g1 so

that σkpg1, vq “ σkpg, vq for v P V Tpv,wq and σkpg1, vq “ id for v P V Tpw,vq. Simi-

larly, define g2 such that σkpg1, vq “ σkpg, vq for v P V Tpw,vq and σkpg1, vq “ id for

v P V Tpv,wq. It can then be seen that g1 P FixFk,e
pTpw,vqq and g2 P FixFk,e

pTpv,wqq

and g “ g1g2. Thus it follows that g P FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq which com-

pletes the proof. �

Using the simplicity theorem given earlier, the following result is then deduced:

Corollary 3.33. Let F ď AutpBd,kq and fix k P N. The group UkpF q
`k is simple.

3.5. Almost Automorphism Groups of Trees

Almost automorphism groups of trees, first studied by Neretin in [Ner84], and

commonly referred to as Neretin’s groups, are another novel example of groups of

automorphisms acting on infinite trees. Specifically, given a regular rooted tree

without leaves, the boundary of the tree, which can be identified with all the infi-

nite rays starting at the root, forms a metric space under the choice of a suitable

metric. This metric space is in fact a compact ultrametric space. The almost au-

tomorphism group of this tree can be recognised as a group of homeomorphisms



34 3. GROUPS ACTING ON TREES

of the boundary of the rooted tree, and these homeomorphisms are occasionally

referred to as ‘spheromorphisms’ of the tree.

Almost automorphism groups of regular rooted trees enjoy many similar properties

to the universal groups and Le Boudec’s groups already discussed in this chap-

ter: they are compactly generated, totally disconnected, locally compact groups.

These groups also have the added properties of being non-discrete and abstractly

simple, which was not always the case in the examples of universal groups and Le

Boudec’s groups. In the following, we give the reader an introduction to almost

automorphism groups of trees and discuss some of their basic properties in more

detail.

3.5.1. Metric Space Structure of the Boundary of a Rooted Tree.

Here we comment on the metric space structure of the boundary of a rooted tree.

Let Td,k denote the rooted tree such that the root has degree k, and every other

vertex has degree d` 1. As discussed in the preliminaries section, the boundary of

a tree is the collection of all equivalence classes of infinite rays, where two rays are

considered equivalent if their intersection is also an infinite ray. In the case of the

rooted tree Td,k, the boundary BTd,k can be naturally identified with the collection

of all infinite rays starting at the root vertex in Td,k. Given any ray ξ P BTd,k, we

will write ξ “ pviq
8
i“1 where the vi are the vertices on the ray ξ and v1 is the root

vertex. Then let ξn denote the path pviq
n
i“1 in Td,k. Given two rays ξ, ξ1 P BTd,k,

define εpξ, ξ1q “ suptn P N | ξn “ ξ1nu. This leads to the definition of a metric d on

BTd,k by

dpξ, ξ1q “ e´εpξ,ξ
1
q

which is often called the visual metric. We use the convention that if εpξ, ξ1q “ 8,

then dpξ, ξ1q “ 0. It is easy to see that εpξ, ζq ě mintεpξ, λq, εpλ, ζqu, for ξ, ζ, λ P

BTd,k; it follows that dpξ, ζq ď maxtdpξ, λq, dpλ, ζqu and hence BTd,k is an ultramet-

ric space. It can be shown that pBTd,k, dq is in fact a compact ultrametric space

and homeomorphic to the cantor set. It is easy to see why this is the case for the

binary rooted tree: the boundary can be identified with the collection of all infinite

binary strings, which is often taken as the definition of the cantor set.
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Before moving on to defining almost automorphism groups of trees, we note that

given ξ “ pviq
8
i“1 P BTd,k, the ball Bpξ, e´nq is precisely BT vn

d,k , where T vn
d,k denotes

the rooted subtree hanging below vn in Td,k. Indeed, Bpξ, e´nq is precisely all

the infinite rays in BTd,k that agree with ξ on the vertices v1, . . . , vn which can be

naturally identified with BT vn
d,k . Pictured below is a ball in the rooted tree T2,2.

3.5.2. The Almost Automorphism Group of Td,k. We will give two dif-

ferent definitions for an almost automorphism of the tree Td,k. The first definition

provides a better visual picture and intuition than the second. That being said,

the second definition given here is much more refined and is seen in many papers

throughout the literature.

Given a finite subtree T of Td,k, we call T complete if for every vertex v P V T that

is not a leaf, all the vertices adjacent to v in Td,k are also contained in T . Following

the paper [Led19], given two finite complete subtrees T1 and T2 of Td,k, an honest

almost automorphism of Td,k is a forest isomorphism ϕ : Td,kzT1 Ñ Td,kzT2. Then

define an equivalence relation on the collection of all honest almost automorphisms

as follows: let T1, T2, T
1
1, T

1
2 be finite complete subtrees of Td,k and ϕ : Td,kzT1 Ñ

Td,kzT2 and ψ : Td,kzT 11 Ñ Td,kzT 12 two honest almost automorphisms. Define an

equivalence relation by ϕ „ ψ if and only if there exists a finite complete subtree

T Ď Td,k containing T1 Y T
1
1 such that ϕ|Td,kzT “ ψ|Td,kzT .
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ϕ

An honest almost automorphism

Definition 3.34. An almost automorphism of Td,k is an equivalence class of honest

almost automorphisms under the equivalence relation „.

The almost automorphism group AAutpTd,kq is defined as the collection of all almost

automorphisms of Td,k. Essentially an almost automorphism permutes subtrees of

Td,k, and two almost automorphisms are considered equivalent if they have the

same action on the boundary of Td,k.

Composition of almost automorphisms is defined as follows: given two almost au-

tomorphisms rϕs and rψs, choose representatives of the equivalences classes, say,

ϕ̃ : Td,kzT1 Ñ Td,kzT2 and ψ̃ : Td,kzT 11 Ñ Td,kzT 12 respectively. Let T Ď Td,k
be a finite complete subtree such that T contains T1 Y T 12 and choose finite com-

plete subtrees T3, T4 Ď Td,k such that there exists honest almost automorphisms

ϕ̃1 : Td,kzT Ñ Td,kzT3 and ψ̃1 : Td,kzT4 Ñ Td,kzT which are also representatives of

rϕs and rψs respectively. We may then compose these representatives and define

rϕs ˝ rψs “ rϕ̃1 ˝ ψ̃1s.

We will now state the second, more refined definition. This definition can be found

for instance in the paper by Le Boudec-Wesolek [LBW19]. Given two metric space

pX, dXq and pY, dY q, a map ϕ : X Ñ Y is called a homothety if there exists a C P R

such that dXpx, x
1q “ CdY pϕpxq, ϕpx

1qq for all x, x1 P X. An almost automorphism

can then also be defined as follows:

Definition 3.35. An almost automorphism of Td,k is a homeomorphism ϕ P

HomeopBTd,kq such that there exists a partition of BTd,k “
Ůn
i“1Bi, where Bi

is a ball in BTd,k for each i, and ϕ is a homothety when restricted to each of the Bi.
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When Td,k is a regular tree, the groups AAutpTd,kq are commonly referred to as

Neretin’s groups, as these groups were first studied by Neretin in [Ner84]. To

understand the topology on the groups AAutpTd,kq, we refer back to Proposition 3.7.

First note that the group AutpTd,kq can be identified as a subgroup of AAutpTd,kq.

If we let G “ AAutpTd,kq and H “ AutpTd,kq, it can be shown that these groups

satisfy the hypotheses of Proposition 3.7. Thus, the groups AAutpTd,kq are given

the unique group topology such that the inclusion map of AutpTd,kq into AAutpTd,kq

is continuous and open. The groups AAutpTd,kq then become totally disconnected

locally compact groups with this topology. It is further the case that these groups

are compactly generated and non-discrete. In Kapoudjian’s paper [Kap99], it is

also shown that Neretin’s groups are always abstractly simple. We summarise these

comments in the following theorem:

Theorem 3.36. The groups AAutpTd,kq are (abstractly) simple, compactly gener-

ated, non-discrete, totally disconnected, locally compact groups.





CHAPTER 4

Two Properties of Totally Disconnected Locally

Compact Groups

4.1. Cartan-like Decompositions

In the theory of Lie groups and algebraic groups, studying decompositions of the

groups is a useful tool in understanding the structure of the groups. Decompositions

allow one to break the group down into smaller subsets, and by understanding the

structure of the smaller, often easier to understand subsets, one can infer structural

information about the whole group. The Cartan decomposition is a particularly

well known decomposition studied in Lie theory. Given a group G and a compact

subgroup K ď G, a Cartan decomposition of G with respect to K is a double coset

decomposition of the form:

G “
ğ

aPA

KaK

where A Ď G is a set of coset representatives.

In the theory of totally disconnected locally compact groups, some recent work

has involved understanding whether results about Lie groups and algebraic groups

transfer across to totally disconnected locally compact groups. Following this idea,

in the paper [CW20], it was shown among other results, that the automorphism

group of a label-regular tree admits a Cartan-like decomposition, and as a result

of this, every continuous homomorphism from the simple subgroup Aut`pTaq has

closed range. Both these properties are shared in common with simple Lie groups.

This work then leads to defining two properties, the contraction group property and

the closed range property, which will be discussed shortly. The closed range property

has an intimate connection with the contraction group property and Cartan-like

39
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decompositions of groups. We first recall some of the work from this paper, in

particular, the result regarding Cartan-like decompositions of automorphism groups

of label-regular trees:

Theorem 4.1. [CW20, Theorem 3.1] Let Ta be a label-regular tree with labels in

a set, Ω, and let K “ AutpTaqv for a fixed vertex v P V Ta. Let A be the set of all

finite sequences in Ω that are compatible with Ta and begin and end with the label

λpvq. For each α P A, choose vα P V Ta and gα P AutpTaq such that the sequence of

labels of vertices on the unique path from v to vα is α and gαpvq “ vα. Then the

double cosets KgαK, α P A, are pairwise disjoint and

AutpTaq “
ğ

αPA

KgαK.

Now, given a group G and a sequence pgiqiPI Ď G, we define the contraction group of

the sequence, denoted conppgiqiPIq, to be conppgiqiPIq :“ tx P G | gixg
´1
i Ñ idGu. It

was shown in [CW20], that if we take any infinite subset of coset representative in

the above Cartan-like decomposition of AutpTaq, then either the subset is bounded

or has a subsequence with non-trivial contraction group. This result led to the

fact that any continuous homomorphism from the simple subgroup Aut`pTaq ď

AutpTaq, has closed range. In the remainder of this article, we will be aiming to

further understand these properties in a broader context than what was studied in

[CW20]. From now on, we will agree to use the following terminology for these

properties:

Definition 4.2 (Contraction Group Property). Let G be a topological group,

K ď G a compact subgroup, and A Ď G such that G admits the Cartan-like

decomposition G “
Ů

aPAKaK. We say that this decomposition has the contrac-

tion group property if every sequence of elements in A is either bounded or has a

subsequence with non-trivial contraction group. We will say that a group G has

the contraction group property if it admits a Cartan-like decomposition satisfying

the contraction group property.

Similarly, we define the closed range property as follows:
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Definition 4.3 (Closed Range Property). A topological group G is said to have

the closed range property if every continuous homomorphism ϕ : G Ñ G1, for an

arbitrary topological group G1, has closed range i.e. ϕpGq is closed in G1.

Later it will be shown that the contraction group property for a group G does

not depend on the choice of compact open subgroup K, however, it is not true in

general that the contraction group property is independent of the choice of coset

representatives. This will be discussed in more detail later. In the main theorem of

[CW20], it was essentially shown that any simple group satisfying the contraction

group property also has the closed range property. This is a generalisation of

Theorem 4.1 in [CW20] and will be proved later in this chapter as well. This idea

will be utilised to prove some more general closed range results for a larger class of

t.d.l.c. groups acting on trees that were discussed in the prior chapter.

We now proceed to extend this work by developing some more general results

concerning the contraction group and closed range properties.

4.2. The Contraction Group Property

In this section we will prove some more general results concerning the contraction

group property. First we show that the contraction group property does not depend

on the choice of compact open subgroup:

Proposition 4.4. The contraction group property does not depend on the choice

of compact open subgroup in the Cartan-like decomposition.

Proof. Let G be a topological group and suppose that there exists a compact

open subgroup K ď G, and a set of coset representatives A Ď G such that G ad-

mits a Cartan-like decomposition G “
Ů

aPAKaK satisfying the contraction group

property. Let K 1 ď K be another compact open subgroup of G. By compactness

of K, there exists elements g1, . . . , gn P G such that K “
Ůn
i“1 giK

1. Then G also

decomposes as G “
Ů

aPA

Ů

i,j K
1pg´1

i agjqK
1. Now suppose we have a sequence of

coset representatives phkq
8
k“1 Ď tg

´1
i agjuaPA,i,jPt1,2,...,nu. We need to show that the

sequence phiq
8
i“1 is either bounded or has a subsequence with non-trivial contraction

group.
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If the sequence is bounded, we are done, so we may suppose that it is unbounded

and show that it has a subsequence with non-trivial contraction group. Since there

is only finitely many gi, by passing to a subsequence of the hi, we may suppose

that for each i, hi “ g´1
l aigm for some fixed natural numbers l and m, and ai P A

for each i. Now, by assumption, there exists a subsequence paij q
8
j“1 Ď paiq

8
i“1 and

a non-trivial x P conppaij q
8
j“1q. It is then easy to compute that x̃ “ g´1

m xgm is

in the contraction group of the subsequence phij q
8
j“1 and non-trivial. Thus the

decomposition G “
Ů

aPA

Ů

i,j K
1pg´1

i agjqK
1 has the contraction group property.

Conversely, retaining the notation from above, suppose that K2 is a compact open

subgroup of G containing K. Then there exists a subset A2 Ď A such that G “

Ů

aPA2 K
2aK2. Since every sequence in A is either bounded or has a subsequence

with non-trivial contraction group, the same property holds for the set A2. Thus

the decomposition G “
Ů

aPA2 K
2aK2 has the contraction group property.

We have shown that if a compact open subgroup of G contains K or is contained

in K, then G admits a Cartan-like decomposition with respect to this compact

open subgroup satisfying the contraction group property. Now suppose that L is

an arbitrary compact open subgroup not necessarily contained in or containing

K. Then L X K is a compact open subgroup contained in K, hence G admits a

Cartan-like decomposition satisfying the contraction group property with respect

to L X K. Then it follows that G also admits a Cartan-like decomposition with

respect to L satisfying the contraction group property since L contains LXK and

the contraction group property holds for the decomposition with respect to L. �

Ideally, the contraction group property would also not depend on the choice of coset

representatives in the Cartan-like decomposition, however, unfortunately, this is not

always the case as shown in the following example:

Example 4.5. Take the group G “ PGLpQpq and the compact open subgroup

K “ PGLpZpq. G admits a Cartan-like decomposition:

G “
ğ

nPN
KgnK
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where g “ p p 0
0 1 q. It can be checked that the matrix p 1 1

0 1 q is a non-trivial element in

the contraction group of the sequence pgnq8n“1. Then since yn “ p
1 0

pn{3 1 q (where we

assume we take the ceiling of n{3 when it is non-integral) is in the compact open

subgroup K for each n P N, the elements gn “ gnyn “ p
pn 0

pn{3 1
q also form a set of

coset representatives for a Cartan-like decomposition for PGLpQpq. We claim that

the contraction group of every subsequence of the sequence pgnq
8
n“1 is trivial.

Suppose that h “ p a bc d q P PGLpQpq and is in the contraction group of the sequence

pgnq
8
n“1. Then, it may be checked that:

g̃n “ gnhg
´1
n “

¨

˝

a´ bpn bpn

pa´ dqp´2n{3 ` cp´n ´ bp´n{3 bpn{3 ` d

˛

‚

Since it is assumed that g̃n Ñ p 1 0
0 1 q, we must have a “ d “ 1. Then,

g̃n “

¨

˝

1´ bpn bpn

cp´n ´ bp´n{3 1` bpn{3

˛

‚

It then follows that we must have b “ c “ 0 for g̃n to converge to the identity,

otherwise, the norm of the bottom left entry of the matrix will diverge to 8, and

hence the bottom left entry must diverge. Thus h is the identity and so conppgnq
8
n“1q

is trivial. It is clear that every subsequence of the sequence pgnq
8
n“1 must also have

trivial contraction group. This demonstrates that if one Cartan-like decomposition

of a group has the contraction group property, then another decomposition may

not, even if we keep the same compact subgroup K.

Although, in general, the choice of coset representatives in a Cartan-like decomposi-

tion can effect whether the decomposition will have the contraction group property

or not, for some classes of groups this is not the case:

Proposition 4.6. Let Ta be a label regular tree. The contraction group property

for AutpTaq does not depend on the choice of coset representatives.

Proof. Assume the contraction group property for coset representatives holds

for some decomposition AutpTaq “
Ů

αPAKgαK, where K “ AutpTaqv is some

compact open subgroup with v P V Ta, and A “ tgα | α P Au is a set of coset



44 4. TWO PROPERTIES OF TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS

representatives for the decomposition and A an indexing set. We may assume that

A is in one-to-one correspondence with the set of finite sequence of labels compatible

with Ta as discussed in [CW20].

Suppose there exists another set of coset representatives thβ | β P Bu such that

AutpTaq “
Ů

βPBKhβK, where B is some indexing set and each of the hβ are au-

tomorphisms in AutpTaq. We need to show that this new decomposition satisfies

the contraction group property. Let thβi
u8i“1 be a subsequence of the coset rep-

resentatives. Since each of the hβi
are in AutpTaq and AutpTaq “

Ů

αPAKgαK,

for each i we may write hβi “ kigαik
1
i for some ki, k

1
i P K and gαi P A. If the

sequence pgαi
q8i“1 is bounded then the sequence phβi

q8i“1 is also since each of the

ki and k1i are contained in the compact open subgroup K. So we assume that the

sequence pgαi
q8i“1 is unbounded and show that there is a non-trivial element in the

contraction group of some subsequence of the hβi .

The remainder of the proof follows a similar argument to the proof of [CW20, The-

orem 4.1]. Since the sequence pgαi
q8i“1 is unbounded, by passing to a subsequence if

necessary, we may suppose dpv, gαi
pvqq ě i for each i, and since Ta is locally finite,

by passing to a subsequence if necessary, we may suppose that the first vertex on

the path from v to gαipvq is always w P V Ta. Then since ki and k1i fix v for each i,

we have that dpv, hβi
q ě i for each i. Also, since Ta is locally finite, we may suppose

by passing to subsequences if necessary, that each of the ki and k1i have the same

action on Bpv, 1q in Ta. Then it follows from this that the first vertex on the path

from v to hβipvq always passes through a fixed vertex say w1 P V Ta.

Now, if infinitely many of the hβi are translations with v on the axis, then by

passing to subsequence is necessary, we may suppose that they all are. Choosing

an x P AutpTaq that fixes Tpv,w1q and acts non-trivially on Tpw1,vq gives a non-trivial

element in the contraction group of the sequence phβi
q8i“1. If only finitely many

of the hβi are translations with v on the axis, again, by passing to a subsequence,

we may suppose that each of the hβi
are either elliptic elements, inversions or

translations with v not on the axis. Choosing x P AutpTaq that acts non-trivially

on Tpv,w1q and fixes Tpw1,vq gives a non-trivial element in the contraction group of

the sequence phβiq
8
i“1. �
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4.3. The Closed Range Property

This section will study some more general results concerning the closed range prop-

erty in topological groups. First we prove a generalisation of Theorem 4.1 from

[CW20] that will later be applied to groups acting on trees to develop some new

closed range properties for certain groups. We also prove a result regarding when

the closed range property is passed to supergroups.

Theorem 4.7. Let G be a topologically simple topological group that has the con-

traction group property. Then G has the closed range property.

Proof. Suppose the hypotheses of the theorem. Let K ď G be a compact

open subgroup and A Ď G such that G admits a Cartan-like decomposition G “

Ů

aPAKaK with the contraction group property, and suppose that ϕ : G Ñ H is

a non-trivial continuous homomorphism to some topological group H. Consider

a sequence pgiq
8
i“1 Ď G and suppose that ϕpgiq converges to h P H. It must

be shown that h P ϕpGq. Now, there are sequences pkiq
8
i“1, pk

1
iq
8
i“1 Ď K and

paiq
8
i“1 Ď A such that gi “ kiaik

1
i for each i. Passing to a subsequence if necessary,

we may suppose, by compactness of K, that the sequences pkiq
8
i“1 and pk1iq

8
i“1

converge to elements k, k1 P K respectively. Then ϕpaiq “ ϕpkiq
´1ϕpgiqϕpk

1
iq
´1 Ñ

ϕpkq´1hϕpk1q´1 as iÑ8. Thus the sequence pϕpaiqq
8
i“1 converges.

If the sequence paiq
8
i“1 is bounded, it may be supposed, by passing to a subsequence

if necessary, that the sequence is constant. Then ai “ a P A for each i and

h “ ϕpkqϕpaqϕpk1q P ϕpGq. Thus the proof is complete. So suppose that the

sequence paiq
8
i“1 is unbounded and set â :“ limiÑ8 ϕpaiq. By assumption, there

exists a subsequence paij q
8
j“1 Ď paiq

8
i“1 and a non-trivial x P conppaij q

8
j“1q. Then

âϕpxqâ´1 “ limiÑ8 ϕpaixa
´1
i q “ limjÑ8 ϕpaijxa

´1
ij
q “ idH by definition of the

contraction subgroup for the sequence paij q
8
j“1 and continuity of ϕ. Hence the

kernel of ϕ contains conppaij q
8
i“1q and so ϕ must be the trivial homomorphism

because G is topologically simple, a contradiction. This completes the proof. �

We now move onto showing that, under certain assumption, the closed range prop-

erty is passed to supergroups, in particular, we show that if a locally compact group
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G has a cocompact subgroup with the closed range property, then G also has the

closed range property. We need the following two lemmas for the proof:

Lemma 4.8. Let G be a topological group and A,B Ď G with A compact and B

closed. Then the set AB is closed.

Proof. Let pciqiPI be a net in C “ AB with I some indexing set. Suppose

that ci Ñ c for some c P G. We will show that c P C. For each i P I, choose

ai P A and bi P B such that ci “ aibi. By compactness of A, there exists a subnet

pajqjPJ Ď paiqiPI (J Ď I), and an a P A such that aj Ñ a. Then it follows by

continuity of the group operations in G, and closedness of B, that bj “ a´1
j cj Ñ b

for some b P B. Thus cj Ñ ab and hence ci Ñ ab. Since ab P AB, it follows that

AB is closed. �

Recall that given a topological group G and a subgroup H ď G, H is said to be

cocompact in G if its quotient G{H is compact in the quotient topology. We prove

the following fact about locally compact groups:

Lemma 4.9. Let G be a locally compact group and suppose that H is a cocompact

subgroup of G. Then there exists a compact set K Ď G such that G “ KH.

Proof. Let U be the collection of open sets in G with compact closure and

let π : G Ñ G{H the canonical map. Then, since π is an open map, tπpUq|U P

Uu forms an open covering of G{H. By compactness of G{H, there is a finite

subcover say πpU1q, . . . , πpUnq of G{H. Then it follows that K “
Ťn
i“1 Uαi

is a

compact subset of G, being a finite union of compact sets, and πpKq “ KH “ G

by construction. �

Proposition 4.10. Let G be a locally compact group. Suppose that H is a cocom-

pact subgroup of G with the closed range property. Then G also has the closed range

property.

Proof. Let G be a locally compact group and suppose that H is a cocompact

subgroup of G with the closed range property. Let K be a compact subset of G

such that G “ KH, which exists by the previous lemma. Let ϕ : G Ñ Ĝ be a

continuous homomorphism to an arbitrary topological group Ĝ. By assumption,
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we know that ϕpHq is closed in Ĝ, since H satisfies the closed range property and

the restriction of ϕ to H is continuous. Since ϕ is continuous, ϕpKq is compact in

Ĝ, and then by Lemma 4.8, ϕpGq “ ϕpKqϕpHq is closed being the product of a

compact set and a closed set. �





CHAPTER 5

The Contraction Group and Closed Range

Properties in Tree Automorphism Groups

In this chapter we study the contraction group and closed range properties in some

of the automorphism groups of trees seen in Chapter 3. In the first section, we

provide an example of how the contraction group property can fail for a Cartan-

like decomposition of the Le Boudec groups GpF, F 1q. We then proceed to develop

some closed range results for the simple subgroups G`k encountered in Chapter 3 as

well. This leads to some closed range results for the (generalised) universal groups

and more generally groups acting on trees with a locally semiprimitive action. The

section ends with some comments on almost automorphism groups and the relation

between commensurated subgroups and the closed range property.

5.1. Le Boudec’s Groups

We will now briefly discuss the contraction group and closed range properties in

the context of Le Boudec’s groups. It can be easily deduced from Proposition 3.10

that the groups GpF, F 1q do not in general satisfy the closed range property: when

GpF, F 1q ‰ UpF 1q, the inclusion map GpF, F 1q ãÑ AutpTdq is continuous but not

closed. In the following we give an explicit example of a Cartan-like decomposition

of one of Le Boudec’s groups that does not satisfy the contraction group property.

We show that there exists a Cartan-like decomposition of Gpxp123qyq that does

not satisfy the contraction group property. To do this, it is suffice to find such a

decomposition for the subgroup Gpxp123qyqv for some fixed v P V Td. Indeed, we can

extend a set of coset representatives for a Cartan-like decomposition of Gpxp123qyqv

to a set of coset representatives for a Cartan-like decomposition of Gpxp123qyq, and if

the contraction group property is not satisfied for the decomposition of Gpxp123qyqv,

then it will not be satisfied for the decomposition of Gpxp123qyq either.

49
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Recall from the section on Le Boudec’s groups in Chapter 2, that the topology on

Gpxp123qyq is the unique group topology such that the inclusion map Upxp123qyq ãÑ

Gpxp123qyq is continuous and open. In particular, the compact open subgroups of

Gpxp123qyq are precisely the compact open subgroups in Upxp123qyq, and their trans-

lations and finite unions in Gpxp123qyq. Hence, for our Cartan-like decomposition

of Gpxp123qyqv, we will take the compact open subgroup to be K “ Upxp123qyqv.

First, we state the following lemma which demonstrates a method for choosing coset

representatives in a Cartan-like decomposition for the Le Boudec groups:

Lemma 5.1. Let F ď F 1 ď Sympdq be two permutation groups and K “ UpF qv

for some vertex v P V Td. Set An “ tg P GpF, F 1qvzUpF qv | Spgq Ď Bpv, nqu

and A “
Ť8

i“1Ai. Define an equivalence relation on A by a1 „ a2 if and only if

there exists k, k1 P K such that a1 “ ka2k
1 and let Ã be a set of representatives

of equivalences classes in A{„. Then each of the double-cosets KaK are pairwise

disjoint for each a P Ã and

GpF, F 1qv “
ğ

aPÃ

KaK

Proof. Let g P GpF, F 1qv and suppose that Spgq Ď Bpv, nq. Then there exists

a P An such that a´1g P UpF qv; for instance, take a “ g if g P GpF, F 1qvzUpF qv

or a “ id if g P UpF qv. Then it follows that g “ ak for some k P K so GpF, F 1q “
Ť

aPA aK “
Ť

aPAKaK. Now, there exists a unique element ã P Ã such that ã “

kak1 for some k, k1 P K. It follows that g P KãK and hence GpF, F 1q “
Ť

aPÃKaK.

To show that the cosets are disjoint, suppose that KaK X Ka1K ‰ H for some

distinct a, a1 P Ã. Then we must have that k1ak
1
1 “ k2a

1k12 for some ki, k
1
i P K

(i “ 1, 2). It follows that a “ ka1k1 for some k, k1 P K i.e. a „ a1. Hence we must

have that KaK “ Ka1K. Thus the cosets are either equal or disjoint and hence

GpF, F 1qv “
Ů

aPÃKaK. �

Thus choosing coset representatives for a Cartan-like decomposition of the groups

GpF, F 1qv is a matter of choosing one automorphism from each of the equivalence

classes in A{„. In particular, to find a sequence of coset representatives that do not

satisfy the contraction group property, it is suffice to find a sequence in Gpxp123qyqv
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that has trivial contraction group, such that each of the elements are not equivalent

under the equivalence relation „ described in the lemma. Then we may extend this

sequence to a sequence of coset representatives for a Cartan-like decomposition of

Gpxp123qyqv that does not satisfy the contraction group property.

Thus, for each n P N, define an P Gpxp123qyqv to ‘switch’ the two left most vertices

on each of the levels 2, . . . , n of the 3-regular (pictured as the rooted tree T2,3) as

illustrated below:

v

Level n

Level n ´ 1

The automorphism an

Since Upxp123qyqv consists of only those automorphisms that cyclically permute the

vertices on level 1 of the above tree (and have the same local action at each vertex),

it is easy to see that an is not equivalent to am for any m ‰ n. We just need

to show that every subsequence of panq
8
n“1 has trivial contraction group. This is

indeed the case since Gpxp123qyq is a discrete group, however, we will also give the

following argument which provides more intuition as to why the contraction group

is trivial.

If x P conppaniq
8
i“1q for some subsequence paniq

8
i“1 Ď panq

8
n“1, then x has to fix the

root v otherwise anxa
´1
n would shift v to a vertex distance dpv, xpvqq away from

v for all n, hence tani
xa´1

ni
u8i“1 could not converge to the identity. Also, x clearly

has to act trivially on the two right most branches of the above tree. If x acts

non-trivially on the left most branch of the tree, then there is some level, say level
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m, on which x switches (atleast) two vertices, and it is easy to see that ani
xa´1

ni

acts non-trivially on level m for each i. Thus x must be trivial and hence every

subsequence of panq
8
n“1 has trivial contraction group.

5.2. Closed Groups Acting on Trees

We now extend the work on Cartan-like decompositions and the closed range prop-

erty seen in [CW20] to a larger class of groups acting on trees. We show in the

following, that under standard assumptions, for any closed subgroup G ď AutpT q,

G`k has the closed range property. This will have consequences for universal groups,

k-closures of groups acting on trees and non-discrete locally semi-primitive groups.

Throughout this section we assume that T is an arbitrary infinite locally finite tree

without leaves. First we note that closed subgroups of the automorphism group of

a locally finite tree T admit a Cartan-like decomposition with a vertex stabiliser as

the compact open subgroup:

Proposition 5.2. Let G ď AutpT q be a closed subgroup. For any v P V T , the

vertex stabiliser K “ Gv ď G is a compact open subgroup of G, and G admits

a Cartan-like decomposition G “
Ů

aPAKaK for some A Ď G. Moreover, A can

be chosen so that there is exactly one element of A for each orbit of G acting on

Gv X Spv, nq for each n P N.

Proof. Fix v P V T . It is clear that K “ Gv is a compact open subgroup in

the subspace topology on G, being the intersection of the compact open subgroup

AutpT qv with G. Now, let Gv denote the orbit of v under the action of G. To show

that G admits a Cartan-like decomposition, enumerate the orbits of K acting on

the spheres Spv, nq XGv Ď T for each n P N. For each orbit, choose a vertex w in

that orbit and an automorphism aw P G that sends v to w. Let A be the collection

of all the chosen aw. We claim that G “
Ů

aPAKaK. Indeed, let g P G. There

exists a vertex w P V T in the K-orbit of gpvq and an automorphism aw P A that

sends v to w. Let k P K such that kgpvq “ w. Then a´1
w kgpvq “ v, so a´1

w kg P K,

and it follows that g P KawK. If there exists aw1
, aw2

P A, aw1
‰ aw2

, such that
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Kaw1
K “ Kaw2

K then this would contradict that w1 and w2 are in different K-

orbits. Thus the double cosets KaK, for a P A, are disjoint for distinct a and hence

it follows that G “
Ů

aPAKaK. �

In particular, for any F ď Sympdq, UpF q admits a Cartan-like decomposition

UpF q “
Ů

aPAKaK where K “ UpF qv for a fixed v P V Td and the coset rep-

resentatives are constructed as above. Recall from [BM00] that a group is called

8-transitive if the stabiliser of a vertex v acts transitively on Spv, nq for every n. If

UpF q is 8-transitive, then UpF q admits a Cartan-like decomposition whose coset

representatives are powers of a single translation:

Corollary 5.3. Let F ď Sympdq and assume that UpF q is 8-transitive. Let α P

UpF q be a translation and v P V Td be a vertex on the axis of α. Then UpF q “
Ů

nPZKα
nK where K “ UpF qv.

Proof. Let g P UpF q. If g fixes v, then clearly g P
Ů

nPZKα
nK. So we may

suppose that gpvq ‰ v. Since F is 8-transitive, there exists a k1 P K such that

k1gpvq is on the axis of α. Then there exists an integer m such that αmk1gpvq “ v.

Let k2 P K such that αmk1g “ k2. It follows that g “ k´1
1 α´mk2 P

Ů

nPZKα
nK.

The cosets are clearly disjoint. �

For use in the forthcoming theorem, we need the following two lemma’s. The first

lemma is just Lemma 4 in [MV12] restated for use here. We direct the reader to

[MV12] for the proof.

Lemma 5.4. Suppose that G ď AutpT q does not stabilise any non-empty subtree

of T . Then the following hold:

(i) Suppose that there is some edge tu, vu P ET such that the pointwise stabiliser

of both the half-trees Tpu,vq and Tpv,uq are non-trivial. Then the pointwise

stabiliser of every half-tree in T is non-trivial.

(ii) Suppose that there is some edge tu, vu P ET such that the pointwise stabiliser

of Tpu,vq is trivial while the pointwise stabiliser of Tpv,uq is non-trivial. Then

G must fix an end of T .
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Now, we prove the following lemma which is a consequence of the previous lemma

and Lemma 3.24:

Lemma 5.5. Suppose that G ď AutpT q and assume that G does not stabilise any

proper non-empty subtree or fix an end of T , and satisfies Property Pk. If G`k is

non-trivial, then the fixator in G`k of every half tree in T is non-trivial.

Proof. Since G`k is normal in G, by Lemma 3.24, G`k does not stabilise any

proper non-empty subtree or end of T . Since G`k is non-trivial, there exists an

edge e “ tv, wu P ET and a non-trivial element g P Fk,e “ FixGpBpv, kqXBpw, kqq.

Now we know that Fk,e “ FixFk,e
pTpv,wqqFixFk,e

pTpw,vqq since G satisfies Property

Pk. Thus, since Fk,e is non-trivial, there must exist a non-trivial element g1 in either

FixFk,e
pTpw,vqq or FixFk,e

pTpv,wqq. Clearly g1 P G`k . Since G`k does not stabilise

any non-empty subtree or fix an end of T , an application of Lemma 5.4piiq followed

by an application of Lemma 5.4piq then shows that the stabiliser in G`k of every

half tree in T must be non-trivial. �

We now come to the following theorem which shows that for closed subgroups G ď

AutpT q, the groups G`k have the closed range property under certain assumptions:

Theorem 5.6. Let G ď AutpT q be a closed subgroup and suppose that G does not

stabilise any proper non-empty subtree or fix an end of T . If G satisfies Property

Pk, then G`k has the closed range property.

Proof. First we note that G`k is open in G since it contains for instance the

open neighbourhood Upid, Bpv, kq X Bpw, kqq of the identity, where tv, wu P ET .

Since G`k is open in G, it is also closed in G, and since G is closed in AutpT q, it

follows that G`k is closed in AutpT q. By Proposition 5.2, G`k admits a Cartan-like

decomposition G “
Ů

aPAKaK, with K “ G`k
v and A Ď G`k as constructed in the

proposition. We also know that G`k is either trivial or simple by Theorem 3.29.

If G`k is trivial then G`k clearly also satisfies the contraction group property, so

we may suppose that G`k is non-trivial and simple. By Theorem 4.7, we just need

to show that the Cartan-like decomposition G`k “
Ů

aPAKaK has the contraction

group property.
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Let paiq
8
i“1 Ď A be arbitrary; we need to show that paiq

8
i“1 is either bounded or has

a subsequence with non-trivial contraction group. If the sequence is bounded, then

we are done, so assume that the sequence is unbounded. Then we may assume, by

passing to a subsequence if necessary, that for each i ě 1 the distance from v to

aipvq is at least i and, since T is locally finite, that the first step of the path from

v to aipvq always passes through the same vertex, w P V T say.

If infinitely many of the ai are translations with v on the axis, by passing to a

subsequence, we may suppose that they all are. Then choose x P G`k to fix

Tpw,vq and act non-trivially on Tpv,wq, which exists by the previous lemma. It is

easy to check that aixa
´1
i fixes the ball of radius i around v for each i and hence

aixa
´1
i Ñ id. So x is a non-trivial element in the contraction group of a subsequence

of the ai and we are done.

Similarly, if only finitely many of the ai are translations with v on their axis, then

it may be assumed that no ai is a translation with v on its axis. Then each of the

ai are either elliptic elements or translations with v not on the axis. Also, for each

i, w is closer than v to the fixed points of ai, if ai is elliptic, or the axis of ai, if it

is a translation. Choose x P G`k that fixes Tpv,wq and acts non-trivially on Tpw,vq.

It is easily checked that aixa
´1
i fixes the ball of radius i around v for each i and

hence converges to the identity. Then x is a non-trivial element of the contraction

group of a subsequence of the ai. This completes the proof. �

We now state a number of corollaries that result from this theorem:

Corollary 5.7. Let G ď AutpT q and suppose that G does not fix any proper non-

empty subtree or fix an end of T . Then pGpkqq`k has the closed range property.

Proof. Since Gpkq contains G, Gpkq does not fix any non-empty subtree or end

of T . Also, Gpkq is closed by Proposition 3.17. Now apply the previous theorem. �

Since the generalised universal groups UkpF q satisfy Property Pk and do not sta-

bilise any proper non-empty subtree or fix an end of T , this also gives us the

following:
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Corollary 5.8. Let F ď AutpBd,kq. Then UkpF q
`k satisfies the closed range

property.

The theorem also allows us to show that the universal groups UpF q satisfy the

closed range property under mild assumptions:

Corollary 5.9. Let F ď Sympdq. Then UpF q` has the closed range property.

Moreover, if F is transitive and generated by point stabilisers, then UpF q has the

closed range property.

Proof. That UpF q` has the closed range property is just a special case of the

previous corollary. When F is transitive and generated by point stabilisers, UpF q`

has index 2 in UpF q by Theorem 3.5, and then an application of Proposition 4.10

shows that UpF q has the closed range property. �

For use in the following corollary, a group G ď AutpT q is locally semi-primitive

if for every v P V T , the vertex stabiliser Gv acts as a semi-primitive permutation

group on the edges incident to v in T . A permutation group is semi-primitive if it

is transitive and all its normal subgroups are either transitive or free.

Corollary 5.10. Let G ď AutpT q be closed, non-discrete and locally semi-primitive.

If G does not fix any proper non-empty subtree or end of T , and satisfies Property

Pk, then G has the closed range property.

Proof. By the theorem, G`k has the closed range property, and by [Tor20,

Proposition 2.11(iii)], G`k is cocompact in G since it is a normal subgroup of G. An

application of Proposition 4.10 shows that G also has the closed range property. �

5.3. Commensurated Subgroups and the Closed Range Property

Let G be an arbitrary group. We say that two subgroups H,K ď G are commen-

surated if rH : H XKs ă 8 and rK : K XHs ă 8. Similarly, the subgroup H is

said to be commensurated in G if rH : gHg´1 XHs ă 8 for all g P G.

Commensurated subgroups are connected with the closed range property we are

studying here. For example, the following result by Le Boudec–Wesolek in [LBW19]
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gives a link between commensurated subgroups and homomorphisms to totally dis-

connected locally compact groups having closed range:

Proposition 5.11. Let G be a t.d.l.c. group such that every proper commensurated

open subgroup of G is compact. Then every continuous homomorphism ϕ : GÑ H

with H a t.d.l.c. group has closed range.

In the paper [LBW19], Le Boudec and Wesolek also show that in almost automor-

phism groups of rooted trees, there are precisely three classes of closed commensu-

rated subgroups:

Theorem 5.12. [LBW19, Theorem 1.6] If Λ ď AAutpTd,kq is commensurated,

then either Λ is finite, Λ is compact and open, or Λ “ AAutpTd,kq.

As a result of this theorem and Proposition 5.3, the following closed range property

for the almost automorphism groups is deduced:

Corollary 5.13. [LBW19, Corollary 7.1] Every continuous homomorphism ϕ :

AAutpTd,kq Ñ G with G a t.d.l.c. group has closed range.

Proposition can also be used to prove the following result for discrete simple groups:

Proposition 5.14. If G is a discrete simple group such that every proper com-

mensurated subgroup is finite, and ϕ : GÑ H is a continuous homomorphism to a

totally disconnected locally compact groups H, then ϕ has closed range.





CHAPTER 6

Buildings and their Automorphism Groups

In this chapter we will give a brief introduction to the combinatorial approach to

buildings and discuss some results concerning automorphism groups of right-angled

buildings. We will also talk about some recent developments on universal groups of

right-angled buildings, a generalisation of universal groups of regular trees. We start

off by introducing some of the basic concepts involving the combinatorial approach

to buildings and will more or less follow [AB08, Chapter 5]. It is assumed that the

reader will already have some familiarity with Coxeter groups and the ‘simplicial’

approach to buildings.

Let S be a set and M “ pmps, tqqs,tPS be a square matrix indexed by the elements

of S satisfying the following properties:

(i) mps, tq P NY t8u for all s, t P S,

(ii) mps, sq “ 1 for all s P S,

(iii) 2 ď mps, tq ď 8 for all s ‰ t,

(iv) mps, tq “ mpt, sq.

A matrix M satisfying the above properties is called a Coxeter matrix. We then

define a group WM given by the following presentation:

WM :“ xS | pstqmps,tq “ 1y

and we interpret the relation pstqmps,tq “ 1 when mps, tq “ 8 to mean that there is

no relation between the elements s and t. We often call WM a Coxeter group with

generating set S and refer to the pair pWM , Sq as a Coxeter system. Often we will

drop the subscript M and merely denote a Coxeter system by pW,Sq and interpret

this to mean that W is a group with generating set S and presentation of the form

above. The Coxeter system pW,Sq is called spherical if W if finite.

59
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For the remainder of this section, fix a Coxeter system pW,Sq and let ` be the

function that assigns to each word in W its length with respect to the generating

set S. A building ∆ of type pW,Sq is a pair pChp∆q, δq, where Chp∆q is a non-empty

set whose elements are called the chambers of ∆, and δ : Chp∆q ˆ Chp∆q Ñ W a

map called the Weyl distance function which satisfies the following properties:

(i) δpC,Dq “ 1 if and only if C “ D.

(ii) If δpC,Dq “ w and C 1 P Chp∆q satisfies δpC 1, Cq “ s P S, then either

δpC 1, Dq “ w or δpC 1, Dq “ sw. If, in addition, `pswq “ `pwq ` 1, then

δpC 1, Dq “ sw.

(iii) If δpC,Dq “ w, then for any s P S there is a chamber C 1 P Chp∆q such that

δpC 1, Cq “ s and δpC 1, Dq “ sw.

We remark that it can be shown that the function δ satisfies δpC,Dq “ δpD,Cq´1

for any C,D P Chp∆q. Further, δ satisfies the gate property, that is, δpC,Eq “

δpC,DqδpD,Eq for all C,D,E P Chp∆q. These facts require proof which we will

not give here, however they can be found in [AB08, Chapter 5] for instance. One

will note that the properties of δ vaguely resemble the properties of a metric: the

above definition of a building is also often referred to as a W -Metric Space.

Now, let J Ď S. Two chambers C,D P Chp∆q are said to be J-equivalent, which

we denote by C „J D, if δpC,Dq P WJ where WJ “ xJy ď W . It is straight

forward to check that this is an equivalence relation on the set of chambers of ∆.

The equivalence classes under this equivalence relation are called J-residues, and

the J-residue containing the chamber C P Chp∆q will be denoted by RJpCq. An

arbitrary subset R Ď Chp∆q is called a residue if it is a J-residue for some J Ď S.

The set J is called the type of the residue and |J | is called the rank (n.b. the rank

of the building ∆ is |S|.

If J “ tsu for some s P S, we say that two chambers C and D are s-equivalent and

write C „s D. Moreover, if δpC,Dq “ s then we say that C and D are s-adjacent,

and two chambers are said to be adjacent if they are s-adjacent for some s P S. The

equivalence classes in Chp∆q under the equivalence relation „s (s P S) are called

s-panels. The term panel is used to refer to an s-panel for some s P S. The unique

s-panel containing a chamber C P Chp∆q will be denoted by PspCq. A building
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such that every panel has cardinality two is called thin, and a building where every

panel has cardinality strictly greater than two is called thick. A thin subbuilding

of the building ∆ is called an apartment of ∆.

A gallery of length n is a sequence of chambers Γ : C0, . . . , Cn such that Ci´1 is

adjacent to Ci for each i. If there is no gallery of shorter length between C0 and

Cn, then we define the distance dpC,Dq between C and D to be n. One can show

that dpC,Dq “ `pδpC,Dqq. The gallery Γ is called minimal if dpC0, Cnq “ n. The

type of the gallery Γ is spΓq :“ ps1, s2, . . . , snq where si “ δpCi´1, Ciq for each i.

It can also be checked that two chambers C,D P Chp∆q are in the same J-residue

if and only if there is a gallery of type ps1, . . . , snq connecting C to D such that

si P J for each i.

Given a residue R and a chamber D P Chp∆q, define dpR, Dq :“ mintdpC,Dq |

C P ChpRqu. It can be shown that there is a unique chamber C1 P ChpRq such

that dpC1, Dq “ dpR, Dq (c.f. [AB08, Proposition 5.34]). The chamber C1 is then

called the projection of D onto R and is denoted by projRpDq. For two residues

R1 and R2, we define projR1
pR2q :“ tprojR1

pCq | C P ChpR2qu.

6.1. Right-Angled Buildings

A Coxeter system pW,Sq is called right-angled if its Coxeter matrixM “ pmps, tqqs,tPS

satisfies the property that mps, tq “ 2 or 8 whenever s ‰ t. A building ∆ of type

pW,Sq is called right-angled if the Coxeter system pW,Sq is a right-angled Coxeter

system. An important result about right-angled buildings is the following result by

Haglund-Paulin in [HP03]:

Theorem 6.1. [HP03, Proposition 1.2] Let pW,Sq be a right-angled Coxeter system

and pqsqsPS be a collection of cardinal numbers indexed by the elements of S such

that qs ě 2 for each s. Then there exists a right-angled building of type pW,Sq

such that every s-panel has cardinality qs. Moreover, this building is unique up to

isomorphism.

Such a building as described in the theorem where each s-panel has prescribed

thickness qs is called a semi-regular right-angled building. Next, we say that a group
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G acts on a building ∆ strongly transitively if G is transitive on pairs pC,Aq in ∆

where C is a chamber and A is an apartment containing C. The following simplicity

result was proved by Caprace in [Cap14] and will later be used to establish a closed

range property for these groups:

Theorem 6.2. [Cap14, Theorem 1.1] Let ∆ be a thick semi-regular right-angled

building of type pW,Sq. Assume that pW,Sq is irreducible and non-spherical. Then

the group Autp∆q` of type preserving automorphisms of ∆ is abstractly simple and

acts strongly transitively on ∆.

If ∆ is a semi-regular right-angled building with prescribed thicknesses pqsqsPS such

that qs ă 8 for each s P S, then the automorphism group Autp∆q is a compactly

generated totally disconnected locally compact group with the permutation topol-

ogy, and by the above theorem, the subgroup of type preserving automorphisms is

a simple compactly generated totally disconnected locally compact group if pW,Sq

is non-spherical and irreducible.

Before moving on to understanding universal groups of right-angled buildings, we

first need to define some more terminology useful for the study of right-angled

buildings. First, given two panels R1 and R2, we say that R1 and R2 are parallel

if projR1
pR2q “ R1 and projR2

pR1q “ R2. It can be shown that parallelism

is an equivalence relation on the set of all residues. This is a corollary of the

following statement from [Cap14]. For use in the following, for J Ď S, define

JK “ tt P SzJ | ts “ st for all s P Ju. When J “ tsu, we use the notational

convention that JK “ sK.

Proposition 6.3. [Cap14, Proposition 2.8] Let ∆ be a right-angled building of

type pW,Sq. The following properties hold:

(i) Any two parallel residues have the same type.

(ii) Let J Ď S. Given a residue R of type J , a residue R1 is parallel to R if and

only if R1 is of type J and R and R1 are both contained in a common residue

of type J Y JK.

An s-tree-wall is then defined as an equivalence class of parallel s-panels in ∆. For

an s-tree-wall T we will let ChpT q denote the set of all chambers of ∆ contained
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in some panel of the equivalence class T . As a result of the above proposition, the

following is also true:

Proposition 6.4. [DMSS18, Corollary 2.25] Let ∆ be a right-angled building of

type pW,Sq and let s P S. Two s-panels P1 and P2 belong to the same s-tree-wall

if and only if they are both contained in a common residue of type sY sK.

6.2. Universal Groups for Right-Angled Buildings

In an analogous way to universal groups of regular trees, semi-regular right-angled

buildings can be assigned a legal labelling and a notion of universal group can

be defined. In this section we give a brief overview of the work from the paper

[DMSS18] where universal groups of right-angled buildings were first defined. For

the remainder of this section, we fix a semi-regular right-angled building ∆ of type

pW,Sq and prescribed thicknesses pqsqsPS .

First we define what a labelling of a semi-regular right-angled building is:

Definition 6.5 (s-Labelling). For each s P S, let Ωs be a set of cardinality qs,

which is called the set of s-labels. A map λs : Chp∆q Ñ Ωs is called an s-labelling

of ∆ if for every s-panel P, there is a bijection between the chambers of P and the

elements of Ωs.

From here, one can then define a notion of ‘legal-labelling’ for semi-regular right-

angled buildings:

Definition 6.6 (Legal s-Labelling). An s-labelling λs : Chp∆q Ñ Ωs is called a

legal s-labelling if for every Sztsu-residue R, λspCq “ λspDq for all C,D P ChpRq.

We remark that, given a legal s-labelling λs, every t-panel P for t P Sztsu can be

assigned a well defined label denoted λspPq since every chamber of P is assigned the

same λs label. Another weaker notion of a legal-labelling is the following, which will

be important in defining universal groups of semi-regular right-angled buildings:

Definition 6.7 (Weak Legal s-Labelling). An s-labelling λs is called a weak legal

s-labelling if whenever P1 and P2 are two s-panels in a common s-tree-wall, then

for all C P ChpP1q, we have λspCq “ λspprojP2
pCqq.
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Every legal s-labelling is indeed a weak legal s-labelling. It is also the case that

every weak legal s-labelling is a legal s-labelling when restricted to ChpT q for an

s-tree-wall T . Now, given two s-labelings λs and λ̃s and a group G ď SympΩsq, we

will say that the labelings λs and λ̃s are G-equivalent if for every s-panel P, there

is g P G such that λs|P “ g ˝ λ̃s|P .

The following gives a relation between legal labelings and weak legal labelings:

Proposition 6.8. [DMSS18, Proposition 2.48] Let s P S and G ď SympΩsq be a

transitive permutation group. Then every weak legal s-labelling is G-equivalent to

a legal s-labelling.

We now come to the definition of a universal group of a semi-regular right-angled

building:

Definition 6.9. Let ∆ be a semi-regular right-angled building with prescribed

thicknesses pqsqsPS . For each s P S, let λs : Chp∆q Ñ Ωs be a weak legal s-labelling,

where Ωs is a set of cardinality qs, and Gs ď SympΩsq a transitive permutation

group. Define the universal group UppGsqsPSq of ∆ with respect to the groups

pGsqsPS as:

UppGsqsPSq “ tg P Autp∆q | pλs|PspgCqq ˝ g ˝ pλs|PspCqq
´1 P Gs, for all s P S,

all s-panels Ps, and for all C P Psu

The above definition of universal group does not depend on whether we start with

a weak legal labelling or a non-weak legal labelling:

Proposition 6.10. [DMSS18, Lemma 3.2] For each s P S, let pλsqsPS and pλ̃sqsPS

be two Gs-equivalent labelings. Then the universal groups constructed using the

labelings pλsqsPS and pλ̃sqsPS coincide.

Further, it is true that the definition of universal group does not depend on the

choice of legal labelling; for different legal labelings the groups are conjugate to

each other.

The local action of a group H ď Autp∆q at a panel P is defined to be the action

of the set-wise stabiliser HP on P. The universal groups UppGsqsPSq have the
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following property, analogous to the corresponding property for universal groups of

regular trees:

Proposition 6.11. [DMSS18, Lemma 3.5] The local action of the universal group

on an s-panel is isomorphic to Gs for each s P S.

The universal groups UpGsqsPS also have the following universality property similar

to universal groups of regular trees: given any closed chamber-transitive subgroup

H ď Autp∆q such that the local action on each s-panel is isomorphic to Gs for each

s P S, then H is conjugate in Autp∆q to a subgroup of UppGsqsPS .

Universal groups of semi-regular right-angled buildings further share many similar

properties to the universal groups of regular trees. The following proposition is

extracted from Proposition 3.7 in [DMSS18]:

Proposition 6.12. Let ∆ be a semi-regular right-angled building with prescribed

thicknesses pqsqsPS. For each s P S, let Gs ď SympΩsq be a finite transitive permu-

tation group. Then the universal group UppGsqsPSq satisfies the following properties:

(i) UppGsqsPSq is a closed subgroup of Autp∆q.

(ii) UppGsqsPSq is chamber transitive.

(iii) If ∆ is locally finite, then UppGsqsPSq is compactly generated.

Proof. (i): The proof is much the same as the proof for universal groups of reg-

ular trees: we will show that Autp∆qzUppGsqsPSq is open. Let g P Autp∆qzUppGsqsPSq.

Then there exists an s-panel Ps for some s P S and a chamber C P ChpPsq such

that pλs|PspgCqq ˝ g ˝ pλs|PspCqq
´1 R Gs. The set of all automorphisms that agree

with g on the panel PspCq is open in the permutation topology on Autp∆q and is

contained in Autp∆qzUppGsqsPSq. Thus it folllows that Autp∆qzUppGsqsPSq is open

and hence UppGsqsPSq is closed in Autp∆q.

(ii): First suppose that C and D are two adjacent chambers in the building ∆. Then

C and D are contained in a unique s-panel P. The set-wise stabiliser UppGsqsPSqP

of the panel P is isomorphic to the group Gs. Since the group Gs is chamber

transitive, it follows that there is an automorphism in UppGsqsPSqP sending C to

D. This shows that for any two adjacent chambers in ∆, there is an automorphism
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taking C to D. Then given any two arbitrary chambers C and D in ∆, find a

minimal gallery Γ : C “ C0, C1, . . . , Cn “ D from C to D in ∆. By the previous

arguments, for each i there exists an automorphism gi P UppGsqsPSq sending Ci to

Ci`1 the composition of these automorphisms then sends C to D. This shows that

UppGsqsPSq is chamber transitive.

(iii): Fix a chamber C P Chp∆q and C1, . . . , Cn P Chp∆q be the chambers adjacent

to C. For each i P t1, . . . , nu choose gi P UppGsqsPS such that gipCiq “ C. We

claim that the compact set UppGsqsPSqC Ytg1, . . . , gnu generates UppGsqsPS . To do

this, it suffices to show that for every g P UppGsqsPS , there exists g1 P xg1, . . . , gny

such that g1gpCq “ C. We prove this by induction on the distance from C to gpCq.

If dpC, gpCqq “ 1 then the result just follows by definition of the gi. Now suppose

that the result holds whenever dpC, gpCqq ď k and suppose that dpC, gpCqq “ k`1.

Find a minimal gallery Γ : C,D1, D2, . . . , Dk`1 “ gpCq between C and gpCq in ∆.

Then there exists a gi such that gipCq “ D1. By the induction hypothesis, since

dpgipCq, gpCqq “ n, there exists g2 P xg1, . . . , gny such that g2gipCq “ C. Then

g1 “ g2gi is in xg1, . . . , gny and satisfies g1gpCq “ C which completes the proof. �

The universal groups of buildings are also (abstractly) simple under certain as-

sumptions:

Theorem 6.13. [DMSS18, Theorem 3.25] Let ∆ be a thick right-angled building

of irreducible type pW,Sq with prescribed thicknesses pqsqsPS and rank at least 2.

For each s P S, let λs : Chp∆q Ñ Ωs be a weak legal s-labelling and Gs ď SympΩsq

a transitive permutation group generated by point stabilisers. Then the universal

group UppGsqsPSq is simple.



CHAPTER 7

Cartan-like Decompositions of Automorphism

Groups of Buildings

In this chapter, we study Cartan-like decompositions of automorphism groups of

semi-regular right-angled buildings with the aim of initiating the study of the con-

traction group and closed range properties for these groups. We continue with a

fixed semi-regular right-angled building ∆ of type pW,Sq and prescribed thicknesses

pqsqsPS . Further it is assumed that qs ă 8 for each s P S. We start out by proving

that the group Autp∆q` admit a Cartan-like decomposition and the coset repre-

sentatives can be chosen to be in one-to-one correspondence with the elements of

W .

By Proposition 6.1 in [Cap14], the group Autp∆q` acts strongly transitively on

∆. For a fixed chamber C P Chp∆q, the group of automorphisms in Autp∆q`

that stabilise C, denoted Autp∆q`C , is a compact open subgroup of Autp∆q`. The

following proposition gives an enumeration of the coset representatives for a Cartan-

like decomposition of Autp∆q`:

Proposition 7.1. Let ∆ be a semi-regular right-angled building of type pW,Sq with

prescribed thicknesses pqsqsPS such that qs ă 8 for each s P S. Fix C P Chp∆q

and let K “ Autp∆q`C . The group Autp∆q` admits a Cartan-like decomposition

Autp∆q` “
Ů

aPAKaK for a collection of coset representatives A Ď Autp∆q`.

Moreover, A may be chosen to be in one-to-one correspondence with the elements

of W .

Proof. Fix an apartment A in ∆ containing C. For each w P W , choose

a chamber C 1 P Chp∆q with Weyl distance w from C (i.e. δpC,C 1q “ w) and

choose an automorphism hw mapping C to C 1. Let A be the collection of all these

hw i.e. A “ thw | w P W u. We claim that Autp∆q` “
Ů

aPAKaK. Indeed,
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let g P Autp∆q` and suppose that δpC, gpCqq “ w. Choose an apartment A1

containing C and gpCq. Then, by strong transitivity of Autp∆q`, there exists an

automorphism k P K mapping the pair pC,A1q to the pair pC,Aq. Since k is type-

preserving, δpC, kgpCqq “ w and hence it follows that h´1
w kgpCq “ C. Thus there

exists k1 P K with h´1
w kg “ k1 i.e. g “ k´1hwk

1 P
Ů

aPAKaK. �

The next goal is to show that the above Cartan-like decomposition of Autp∆q`

satisfies the contraction group property, however, the details of this proof have still

not been fully worked out. The idea is to replicate the proof that the automorphism

group of a label regular tree satisfies the contraction group property seen in [CW20]

(and a similar argument was seen early in this article). In said proof, we are able

to reduce the statement to showing that a sequence of coset representatives pgiqiPI

has a non-trivial contraction group, where the gi shift a fixed vertex v (in the case

of buildings, this fixed vertex will be the chamber C in the above proposition)

in the tree some arbitrary distance along an infinite path. We can make the same

arguments for locally finite semi-regular right-angled buildings. In the case of trees,

to find a non-trivial element in the contraction group of the gi, we just need to

choose a non-trivial element in the fixator of one of the semi-trees obtained by

removing the edge tv, wu from the tree, where w is the first vertex on the path

along which the gi shift the fixed vertex.

For right-angled buildings, we also get an analogue of semi-tree’s called s-wings,

and from a result of Caprace in [Cap14], the fixators of s-wings are non-trivial

under light assumptions. It is hoped that we can use these facts to replicate the

proof for trees, but as already mentioned, the details still need to be worked out.

A successful proof that the above decomposition satisfies the contraction group

property will then allow us to deduce closed range results for Autp∆q` and the

universal groups UpGsqsPS under the assumptions required for simplicity.



CHAPTER 8

Conclusion

After giving the reader an overview of the various different examples of totally

disconnected locally compact groups acting on trees, we have successfully studied

the contraction group and closed range properties that arose in the paper [CW20]

in greater detail, proving a number of results and giving a few examples that further

our understanding of these properties. We transferred the closed range result given

in loc. cit. to a larger class of totally disconnected locally compact groups acting

on trees, which also includes a proof that the universal groups UpF q satisfy the

closed range property whenever F is transitive and generated by point stabilisers.

The article finishes with us initiating the study of the contraction group and closed

range properties for automorphism groups of buildings. This work furthers our

understanding of totally disconnected locally compact groups and further illustrates

some of the similarities that simple totally disconnected locally compact groups

share with Lie groups, and more generally, connected locally compact groups.
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