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Abstract

In previous work it was shown that the automorphism group of a label-regular tree,
denoted Aut(7,), can be decomposed into a Cartan-like decomposition, moreover,
the coset representatives in the decomposition satisfy the contraction group prop-
erty: every unbounded sequence of coset representatives has a subsequence with
non-trivial contraction group. This leads to the proof that the range of every con-
tinuous homomorphism from the simple subgroup of Aut(7,) generated by edge

stabilisers is closed, and we say that this subgroup has the closed range property.

In the present article, after giving the reader an introduction to totally disconnected
locally compact groups acting on trees and buildings, we study these contraction
group and closed range properties in a larger class of totally disconnected locally
compact groups, resulting in closedness of range results for a variety of different
simple totally disconnected locally compact groups. We also study the contraction
group and closed range properties in more generality, in particular, we answer
the question of whether the contraction group property depends on the choice
of compact open subgroup or choice of coset representatives in our Cartan-like
decomposition, and whether the closed range property passes to subgroups and

supergroups.
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CHAPTER 1

Introduction

Broadly speaking, group theory is the mathematical study of symmetries through
the study of an algebraic structure called a group. A common question in group
theory research over the past century or more has been concerned with the clas-
sification, or the attempt to classify, large classes of groups. Currently there is a
classification for finite simple groups, however, much less is known about the class
of infinite groups. Locally compact topological groups are a natural class of groups,
containing all finite groups and many infinite groups, and they appear in numerous
applications across all of mathematics. Modern research is concerned with classi-
fying and building a structure theory for the class of locally compact topological

groups. Every locally compact group G admits a short exact sequence:

1—>G0—>G—>G/G0—>1

where G denotes the connected component of the identity in G, which forms a
closed connected locally compact normal subgroup of G. Hence, understanding
any locally compact group G essentially reduces to understanding the connected

locally compact subgroup Gy, and the totally disconnected locally compact quotient

G/Go.

Connected locally compact groups are already fairly well understood: in work by
Gleason, Montgomery and Zippin [Gle51, (Gle52], [MZ52] to solve Hilbert’s fifth
problem, connected locally compact groups have been identified as inverse limits
of connected Lie groups. Thus the well developed techniques of Lie theory can
be used to understand the class of connected locally compact groups. Totally
disconnected locally compact groups (t.d.l.c. groups from now on) on the other
hand are not as well understood, and for many years the only known general result
for t.d.l.c. groups was a theorem by van Dantzig from 1931 (c.f. [vD31l, vD36]),
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2 1. INTRODUCTION

which asserts that every t.d.l.c. group admits a basis of compact open subgroups. It
wasn’t until the 90’s, when Willis published the paper ‘Structure Theory of Totally
Disconnected Locally Compact Groups’ [Wil94] that significant advances started
to be made in understanding t.d.l.c. groups. In this paper, Willis studies the space
of compact open subgroups of a t.d.l.c. group, and introduces the notion of the
scale function and tidy subgroups for t.d.l.c. groups, which allow for arguments
of dynamical nature to be made and has formed a significant contribution to the
structure theory of t.d.l.c. groups. As a result, rapid progress is now being made
in constructing a structure theory for t.d.l.c. groups, however, much more work is

still needed.

Some of the most recent progress in the study of t.d.l.c. groups has been in un-
derstanding the class of compactly generated t.d.l.c. groups. Indeed, every t.d.l.c.
group can be recognised as a directed union of compactly generated open subgroups,
hence, understanding the compactly generated ones can assist in understanding the
broader picture. Recent work for instance by Caprace—-Monod in [CM11], Caprace—
De Medts in [CDM11] and Caprace-Reid—Willis in [CRW17a, [CRW17b| have
all contributed significant advances to the study of compactly generated t.d.l.c.

groups, and a better picture of these groups is now presenting itself.

The Cayley-Abels graph construction illustrates the ease of working with com-
pactly generated t.d.l.c. groups and the significance of automorphism groups of
graphs in the theory of t.d.l.c. groups: the Cayley-Abels graph associated to a
compactly generated t.d.l.c. group G, is a locally finite connected graph that G
acts on vertex-transitively with compact open vertex stabilisers, and generalises
the idea of a Cayley graph of a finitely generated group to compactly generated
t.d.l.c. groups (see [KMOS8|] for more details). It is a known result that every
compactly generated t.d.l.c. group can be represented as a group of symmetries
of its corresponding Cayley-Abels graph. It is also true that the automorphism
group of every connected locally finite graph is a t.d.l.c. group, hence, the study of
compactly generated t.d.l.c. groups is more or less coextensive with the study of au-
tomorphisms of connected locally finite graphs. As a result, a prominent feature of
the study of t.d.l.c. groups over the past couple of decades has been in understand-

ing automorphism groups of locally finite connected graphs, in particular, infinite
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locally finite trees, and this has turned out to be an extensive and fruitful area of
study. Those groups with a non-discrete topology are of utmost importance to the

structure theory of t.d.l.c. groups.

In the present article, after introducing some basic concepts and notation in Chapter
we begin in Chapter [3| by surveying the current literature on automorphism
groups of locally finite trees. This includes the universal groups construction seen in
[BMOO] and some of its generalisations, as well as the k-closure construction from
[BEW15|]. These groups all provide a large array of examples of (non-discrete)
compactly generated t.d.l.c. groups acting on trees as discussed in the previous
paragraph. Neretin’s groups, or almost automorphism groups of trees, are also
surveyed in this chapter. These are groups acting on the boundary of a rooted tree
and provide further examples of non-discrete compactly generated t.d.l.c. groups.
This chapter provides a strong foundation for Chapter [4 and Chapter [f] where we
build upon the results seen in the paper [CW20].

The article [CW20] follows a recent trend in work that involves taking ideas from
the theory of Lie groups and algebraic groups, and testing whether similar results
hold for t.d.l.c. groups. In this paper, a certain type of infinite labelled tree called
a label-regular tree is studied, and it was shown that the automorphism groups of
these trees admit Bruhat and Cartan type decompositions as typically seen in the
theory of Lie groups and algebraic groups. As a result of these decompositions,
it is also shown that continuous homomorphisms from the simple subgroup gen-
erated by edge stabilisers have closed range, analogous to a result for simple Lie
groups. This is a result of a more general argument: simple groups admitting a
Cartan-like decomposition satisfying a property, called the contraction group prop-
erty, also satisfy the property that every continuous homomorphism from the group
has closed range, which we call the closed range property. In Chapter [4 we study
the contraction group and closed range properties in greater detail than what was
seen in [CW20]. In particular, we determine whether the contraction group prop-
erty depends on choice of compact open subgroup or coset representatives in our
Cartan-like decomposition. We also show that the closed range property passes to

supergroups under certain circumstances.
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In Chapter [5] we investigate the contraction group and closed range properties in a
broader class of automorphism groups of trees that we introduced in Chapter[3] In
particular, we look at the groups G(F, F') studied by Le Boudec in [LB16]. These
groups do not satisfy the closed range property in most cases since they are not
closed in Aut(7y) (except in trivial cases), and as a result, it is expected that they
will provide examples of groups that do not satisfy the contraction group property.
We provide an example of a decomposition of one of these groups to illustrate
how the contraction group property can fail. We then prove some more general
closed range results for groups satisfying a generalised version of Tits’ independence

property called Property P;. The main result is the following theorem:

Theorem 5.4. Let G < Aut(7) be a closed subgroup and suppose that G does not
stabilise any proper non-empty subtree, or fix an end of 7. If G satisfies Property

Py, then GT* has the closed range property.

Some nice corollaries concerning (generalised) universal groups and groups acting

on trees with semiprimitive locally action stem from this result.

Another combinatorial structure that is of interest to us, and is more general than
trees, is the notion of a building. Buildings are simplicial complexes with certain
symmetry properties and were originally introduced by Jacque Tits as a means of
classifying certain algebraic groups. The automorphism groups of certain types
of buildings, such as semi-regular right-angled buildings, form another class of
compactly generated t.d.l.c. groups (provided that the building is locally finite)
and hence are another interesting class of groups to study in the theory of t.d.l.c.
groups. In Chapter [6] we give a brief overview of some recent work on automor-
phism group of semi-regular right-angled buildings as well as a generalisation of the
Universal groups construction for these buildings. The article concludes in Chapter
[7] where we initiate the study of the contraction group and closed range properties

for automorphism groups of buildings.



CHAPTER 2

Preliminaries

In this chapter we give a brief overview of the graph theory and group theory
knowledge required in this article. This also gives us a chance to lay out the

notation that will be used in the sequel.

2.1. Graphs and Group Actions

By a graph, we mean a pair I' = (VT', ET"), where VT is the collection of vertices,
and ET is the collection of edges of the graph I'. The edges are unordered pairs
of vertices from VT i.e. we will be considering undirected graphs. We also assume
that our graphs are simple, meaning they do not contain loops or double edges, and
they are connected. A tree is a connected graph with no cycles. A vertex of a graph
is said to be a leaf if it has valency 1, that is, has only 1 edge connected to it, and a
graph is called locally finite if every vertex has only finitely many edges connected
to it. The regular tree of valency d, denoted Ty, is the infinite tree with the property
that every vertex has d adjacent vertices, where two vertices are adjacent if they

have an edge connecting them.

A path in an infinite graph T' is a sequence of vertices (v;)ier S VT, where I is
some (at most countable) indexing set, v; is adjacent v;41, and v; # v;4o for all
i € I. We call a path a ray if I = N and a bi-infinite path if I = Z. An end
of an infinite graph is an equivalence class of rays, where two rays are considered
equivalent if their intersection is also a ray. The set of all ends of an infinite graph
I" is called the boundary of I' and is denoted by 0I'. The distance between two
vertices u,v € VI for some graph I' will be denoted by dr(u,v) and is defined by
the number of edges on a shortest path between the two vertices u and v. We will
drop the subscript and merely write d(u, v) if it is clear from the context what graph
we are measuring the distance in. For v € VI', we define the ball and sphere of

5



6 2. PRELIMINARIES

radius n as B(v,n) = {u € VI|dr(u,v) < n} and S(v,n) = {u € VI'|dr(u,v) = n}

respectively.

Throughout this article we will mainly be discussing infinite locally-finite trees and
groups acting on them in a certain ways. We will denote the group of all graph

automorphisms of the graph I" by Aut(T).

Given a group G acting on a graph I', for any subset Y € I', Gy denotes the
stabiliser subgroup of Y under the action of G, that is, the subgroup of G consisting
of all elements g € G satisfying gV =Y. If Y = {y} is a singleton set, we will just
write G, instead of G'y,y. Similarly, Fixg(Y) denotes the fizator of the set Y under
the action of GG, the subgroup of all elements g € G satisfying gy = y for all y € Y.
The notation Sym(X) will be used throughout to denote group of all permutation
of the set X.

2.2. Totally Disconnected Locally Compact Groups

A topological group is a group G with a topology such that the maps:

G x G — G,(a,b) — ab

G- Ga—al

are continuous with respect to the topology. It is easy to check from the defini-
tion of a topological group, that the map G — G,h — gh for a fixed g € G is
a homeomorphism of G. As a result of this, topological properties of topological
groups are typically determined by what happens in a neighbourhood of the iden-
tity. A totally disconnected locally compact groups is a topological group whose
topology is totally disconnected, that is, the connected components are singleton
sets, or equivalently, the connected component of the identity is a singleton, and
locally compact, meaning there is a compact neighbourhood of the identity. We will

abbreviate totally disconnected locally compact as t.d.l.c. throughout this article.

As already discussed in the introduction, very little was known about t.d.l.c. groups

for quite some time. Until the 90’s, the only major result known about t.d.l.c. groups
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was the following theorem by van Dantzig from 1936 [vD36] which is referred to

as van Dantzig’s Theorem:

THEOREM 2.1 (van Dantzig). A totally disconnected group admits a basis at the

identity of compact open subgroups

Since the basis of a topological group is determined by a basis at the identity, this
means that every t.d.l.c. group admits a basis of compact open subgroups which
are cosets of the above compact open subgroups. As a remark, every compact open
subgroup of a t.d.l.c. group is a compact totally disconnected group, also known as
a profinite group, that is, an inverse limit of finite groups. Profinite groups, which
posses many similar properties to finite groups, are well understood examples of

t.d.l.c. groups, for example, see [RZ10, (Wil99] for more details.

As mentioned in the introduction, an important part of the current study of t.d.l.c.
groups is the study of automorphism groups of connected infinite locally finite
graphs. Given a graph I', we can endow its automorphism group Aut(T") with the
permutation topology. The permutation topology is defined as having basis of open
sets B = {U(g,F) | g € Auwt(T"), F < VT finite} where U(g, F) = {h € Aut(T) |
g(v) = h(v) for all v e F}. We remark that the permutation topology also agrees
with the topology of uniform convergence on compact sets and the compact open
topology on Aut(I') more typically seen in an introductory topology course. When
T is connected and locally finite, Aut(I") becomes a topological group, and infact a

t.d.l.c. group as we will soon show:

Proposition 2.2. Let T' be a locally finite connected graph. Then Aut(T') is a
topological group with the permutation topology.

PROOF. We just need to show that the product and inversion maps are con-
tinuous. First we show that the product map is continuous. To do this, let
a,B € Aut(T") and F < VT a finite subset of vertices. It is suffice to show that
there exists F’, F” < VT finite such that U(«, F U (B, F") < U(aB, F). Clearly,
taking F' = B(F) and F” = F satisfies this. Hence the product map is continuous.

Similarly, to show that the inversion map is continuous, given F' € VT finite, we

need to show that there exists F' < VT finite such that U(a, /)1 < U(a™1, F).
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Taking F' = a~1(F) does the job, since if 3 € U(«, F’) i.e. B agrees with o on
a~}(F), then 87! must agree with o= on F ie. 7t elU(a™L, F). O

With this topology, the vertex stabilisers in the automorphism group of I" become

compact open subgroups of the automorphism group:

Proposition 2.3. Let I' be a locally finite connected graph. For any v € VT,
Aut(T), is a compact open subgroup of Aut(T")

PrOOF. We will just provide a sketch of the proof. Clearly Aut(T"), is open
since it is precisely the open neighbourhood U(id, {v}). It just needs to be shown
that Aut(T"), is compact. Fix v € VI and take the group of permutations Sym(S(v,n)).
This is a compact group for each n since S(v,n) is finite. Define a map @ :
Aut(l')y — [[,5, Sym(S(v,n)),a = [],=1 @|s(n)- Clearly this map is injective,

since if a|g(y,n) = id for each n, then we must have a = id.

Now, the image of @ is closed in ], Sym(S(v,n)), hence is a compact subgroup
of [],>; Sym(S(v,n)) since [[,~, Sym(S(v,n)) is compact by Tychonoft’s theo-
rem. Let ®’ be the map ® with its codomain restricted to the image of ®. This
is a bijection and it can be checked that it is an open map using the fact that
Sym(S(v,n)) has the discrete topology. Since every continuous bijection from a
compact space to a Hausdorff space is a homeomorphism, we see that the inverse

of ® is a homeomorphism and hence so is ®'. This completes the proof. ([l

As a result of the above proposition, we can now prove the following:

Proposition 2.4. Let T' be a locally finite connected graph. Then Aut(T) is a

totally disconnected locally compact group.

PROOF. It is easy to see that Aut(I') is locally compact using the previous
proposition: if & € Aut(T") and v € VT, then aAut(T"), is a compact neighbourhood

of a.

We just need to show that Aut(T") is totally disconnected, and to do so, we will
show that the connected component of the identity is a singleton. It suffices to

show that for any open neighbourhood U of the identity and id # g € U, we can
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write U as the union of two disjoint open sets U; and U, such that id € U; and

gGUQ.

Let F be a finite subset of VT such that U(id, F) € U. We may assume that
g ¢ U(id, F), since if this is not the case, we can replace F' with F' U {v} where
v e VI and g(v) # v and the property will then be satisfied. Set U; = U(id, F).
We will construct Us so that Uy nUs = & and U = Uy u Us. For each h € U\Uj,
U(h, F) n U is an open neighbourhood of h contained in U disjoint from U;. Then
U= heU\Us (U(h, F) nU) satisfies the required properties for Us. This completes
the proof showing Aut(T") is totally disconnected.

O

Another result that will be useful to us later in the next chapter is the following,
which gives a criteria to determine when the permutation topology on Aut(I") or

one of its subrgoups is non-discrete:

Proposition 2.5. Let T be a locally finite connected graph and G < Aut(T') a

closed subgroup with the subspace topology. The following are equivalent:

(i) The topology on G is non-discrete.
(i) G, is infinite for any ve VL.
(iii) For every v € VI' and n € N, there exists an automorphism g € G such that

9 |Bwm=id and g |pn1)# id.

Proor. Clearly (ii¢) == (ii). Now suppose that G is discrete. Then, for
v € VI, by Proposition [2.3] G, is a compact open subgroup of G, and it is also
discrete since G is. Since every discrete compact space must be finite, we see that
G, is finite. This shows that (i¢) = (i) by proving the contrapositive. To show
that (i) = (ii3) we also prove the contrapositive. So suppose that (iii) does not
hold. Then there exists a vertex v € VI' and an n € N such that any element of G
that fixes B(v,n) is the identity. Then U (id, B(v,n)) is an open set in G that only
contains the identity. Since tranlations are continuous in a topological group, we

see that all the singleton sets are open in GG and hence G is discrete. [l






CHAPTER 3

Groups Acting on Trees

In this chapter we aim to give the reader an overview of a number of different
examples of (non-discrete) compactly generated totally disconnected locally com-
pact groups acting on trees that are found in the literature. The section starts
by introducing the notion of a label-regular tree and their automorphisms groups
which were motivated by concepts studied in Tits’ well known paper [Tit70]. We
then proceed to discuss the class of universal groups U(F') and some of their prop-
erties, along with the Le Boudec groups G(F, F’), which are a generalisation of
the universal groups. The idea of a k-closure of an automorphism group of a tree
introduced by Banks-Elder-Willis in [BEW15] is discussed and we provide a proof
of a generalisation of Tits’ simplicity theorem here. We also briefly mention some
k-closure analogues for universal groups. The chapter concludes with an overview

of Neretin’s groups and some of their properties.

3.1. Label-regular Trees

Let 7 be an infinite locally finite tree without leaves and 2 be a collection of labels
of possibly infinite cardinality. Fix a labelling A : VT —  of the vertices of the
tree T. For v € VT, let N(v) denote the set of all vertices adjacent to v in T
and define a multiset L(v) := {A\(w) : w € N(v)}. We say that T is a label-regular
tree if the multiset L(v) depends only on the value of A(v), that is, if vi,ve € VT
satisfy A(v1) = A(v2), then v; and vy both have the same number of neighbours
with each label. Following the terminology as used in [Tit70], the labelling is said
to be normal if X is surjective and the group of label preserving automorphisms act

transitively on the sets A~ (w) for w € €.

Every label-regular tree is determined by a |Q] x |Q] matrix in the following sense:
let 7 be a label-regular tree with normal labelling and let a;; denote the number

11



12 3. GROUPS ACTING ON TREES

of vertices of label j adjacent to a vertex of label ¢, for 4, j € Q. Then a = (a;;); jen
is an || x || matrix where each of the a;; are non-negative integers and a;; = 0 if
and only if a;j; = 0. This matrix determines 7 up to isomorphism, furthermore, the
graph G, that has Q as its vertex set and {7, j} is an edge if a;; # 0, is connected.
Conversely, for any matrix a = (a;;);, jeo such that each of the a;; are non-negative
integers, a;; = 0 if and only if a;; = 0, and graph Ga connected, there is a label-
regular tree denoted T, with labels in Q and such that every vertex of label ¢ has
a;; neighbours of label j. Throughout the article, whenever we use the notation
Ta, we will assume that 7, is a label-regular tree and a is a square matrix that

determines the labelling on 7,.

The group of automorphisms Aut(7,) of T, is defined to be the group of all auto-
morphisms of the underlying tree that also preserve the labelling i.e. all the auto-
morphisms ¢ of the underlying tree that satisfy A(p(v)) = A(v) for all v € V'T,. We
will call a sequence of labels (w;)ier € €, for some at most countable indexing set
1, compatible with the labelling on the tree 7, if there exists a path (v;)ie;r € VTa

satisfying A(v;) = w; for each i € I.

We will discuss automorphism groups of label-regular trees in a bit more detail in
the next chapter when we start looking at Cartan-like decompositions, but for now

we move on to looking at some other types of t.d.l.c. groups acting on trees.

3.2. Groups Acting on Trees with Prescribed Local Action

Take the regular tree Ty of valency d and a set Q = {1,2,...,d} of d labels. For
v € VTqg, let E(v) denote the set of edges in 7y incident with v. At each vertex
v € VTg, assign a bijective labelling A\, : E(v) — Q with the following property:
if v,w € V7T, are adjacent vertices and e is the edge connecting v to w, then
Av(€) = Ay(e). Then the labelling A : ET7g — Q defined such that A|gu) = Ay
for each v € VT is a well defined labelling of the regular tree 7Ty called the legal
labelling of Ty. Each edge e € ETy is assigned a unique label A(e), and each vertex
in 7y is incident with an edge of each label in Q. For example, pictured below is a

ball of radius 3 in the 3-regular tree with a legal labelling:
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Now, given any automorphism « € Aut(7y), notice that at each vertex v € V7T,
« induces a permutation of the labels of the edges incident with v: for any edge
e € E(v), the label A, (e) is sent to Ay (y)((e)). This is clearly a permutation of the
labels of the edges in F(v) by definition of the labelling and using the fact that « is
an automorphism. Let o(«,v) € Sym(d) denote this permutation induced by « on
the labels of the edges in E(v). The permutation o(a,v) can be defined explicitly

as:

o(a,v) 1= Ag) 0o P

This permutation is referred to as the local action of o at the vertex v. We may

now define the notion of a universal group:

Definition 3.1 (Universal Group). Let A : ET; — € be a legal labelling of 75 and
F < Sym(d). The universal group on F with respect to the labelling A, denoted
UN(F), is defined as UM (F) = {a € Aut(Ty) | o(a,v) € F for all v e VTg}.

We remark that if we have two distinct legal labellings A1 : ETg —  and As :
ETq — Q of T, it can be shown that the universal groups UM (F) and UX2)(F)
are conjugate as subgroups of Aut(7;) and hence isomorphic. Thus the group
U(/\)(F ) does not depend on the choice of legal labelling A, so from now on we will
just refer to the universal groups as U(F') and not depending on a specific legal

labelling.
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We say that the local action of the automorphisms in U(F') is prescribed by F. It
may not be immediately obvious that a universal group is a group: this follows
from the fact that o(aB,v) = o(a, B(v))o(B,v) and o(a™t,v) = o(a,a 1 (v))™?

which the reader may like to check.

Now, a group of automorphisms H < Aut(7y) is called locally permutationally
isomorphic to F < Sym(d), if for every v € VT, the action of H, on E(v) is
isomorphic to the action of F on {1,2,...,d}. The term 'universal’ then comes from
the fact that the universal group U(F') is the largest closed subgroup of Aut(7g)
that is locally permutationally isomorphic to F (up to isomorphism). For a proof

of this fact, see [CM18|, Proposition 6.23].

The following proposition summarises some of the basic properties of universal

groups:

Proposition 3.2. Let F < Sym(d). The following properties hold:
(i) U(F) is closed in Aut(Ty).
(i) U(F) acts transitively on the vertices of Tg

(F)
(F)
(iii) U(F) acts transitively on the edges if and only if F' acts transitively on ).
(iv) U(F) is discrete if and only if F acts freely on Q.

(F)

(v) U(F) is compactly generated.

PROOF. To prove (i), we show that the complement Aut(74)\U(F) is open. Let
g € Aut(Tg)\U(F'). Then there exists a vertex v € V7 such that o(g,v) ¢ F. Note
that any automorphism in Aut(7;) that agrees with g on N(v) is not contained
in U(F) since it has the same local action as g at v. Thus U(g, N(v)) is an open
set containing ¢ and is contained in Aut(7;)\U(F). Since this holds for every
g € Aut(Ta)\U(F'), we see that Aut(T4)\U(F) is open. Thus U(F') must be closed.

(#3): Let v,v" € T4. We construct inductively an automorphism « € U(F') such that

av) = v

First define a as mapping v to v'. Then for every u € N(v), define
a(u) as the unique vertex adjacent to a(v) such that A({v,u}) = A({a(v), a(u)}).
Now suppose that « has been defined on B(v,n) for some n € N. Given w € V7T
at distance n + 1 from v, let w’ be the unique vertex adjacent to w on the path

between v and w. Define a(w) to be the unique vertex adjacent to «(w’) such
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that A\({w’, w}) = A({a(w'),a(w)}). Such a vertex exists since there is a bijection
between the labels on the edges adjacent to a(w’) and the labels on the edges
adjacent to w’. Thus we have defined an automorphism « mapping v to v’ whose

local action at each vertex is the identity. This proves (ii).

(#41): First suppose that U(F) acts transitively on the edges of Ty. Let wy,ws € 2
and fix a vertex v € V7. Let e1,es € F(v) such that A(e;) = w; for i = 1,2. By
assumption, there exists an automorphism « € U(F) such that a(e;) = a(ez), in
particular, o(a,v)(A(e1)) = A(e2). Thus o(«,v) is an element of F' and maps w; to

ws. Since wy and wy were arbitrary, we see that F' is transitive on Q.

Conversely, suppose that the action of F' is transitive on the set of labels, and let
e,e’ € ET; be two distinct edges. Suppose e = {v,w} and €' = {v/,w’} for some
v, w,w' € VTg. If Ae) = A(€’), by the proof of (ii), there exists an o € U(F)
such that a(v) = v" and A(e) = A(«a(e)) for all e € ETy, in particular, we must have
that a(e) = ¢/. So assume that A(e) # A(e’). We show that there is a 8 € U(F),
such that S(a(e)) = €', where a € U(F) is the automorphism constructed in the
proof of (i7) mapping v to v’ and preserving the labelling. We define 8 inductively.
First set B(v') = v'. Let o € F be such that o(A(e)) = A(e’). Define 8 on N(v) so
that o(8,v) = 0. Then 8 may be extended inductively to the whole of T so that
o(B8,v) = o for all v € VT;. It then follows that o« e U(F) and (8o a)(e) = €.

(iv): First suppose that the action of F' is not free. Then there exists an w € 2 and
a non-trivial element g € F,,. Now fix a vertex v € V'T; and choose an infinite path
P = (v;), in Ty starting at v that contains an infinite number of edges of label m.
Define o, € U(F') (n € N) to be the automorphism that fixes v and such that the
local action at the first n vertices of P, incident to an edge of label w, is g, and the
local action is trivial for the remainder of the vertices on P. Then {a,} ; is an
infinite sequence of distinct automorphisms in U(F'), and so U(F) is non-discrete

by Proposition [2.5

Conversely suppose that U(F) is non-discrete. By Proposition there exists
an a € U(F), such that a |g(yn= id and a [g(y,ne1)# id. Thus there exists a
x € S(v,n) such that o(a,x) # id but o(a, x) has a fixed point, hence, the action

of F is not free. This completes the proof of (iv).
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(v) We will just give an outline of the proof. First, fix a vertex v € V7T and let
e1,€e,...,eq € BTy be the edges incident with v such that e; is the unique such
edge with label i. Then for each e;, there is a unique automorphism «; € U(F') that
inverts the edge e; while preserving the labelling of the tree. Now, each of the «;
are contained in U({id}). It can be checked, with the help of the ping-pong lemma
from geometric group theory, that U({id}) = {a1)*{ag)y#---*{agy. Then, we claim
that the set U(F), U {a1,a2,...,a,} generates U(F). Indeed, let o € U(F) and
choose 8 € U({id}) such that Sa(v) = v; such an element exists since U({id}) is
vertex-transitive. Then S« € U(F), and it follows that « is in the group generated
by U(F), U {a1,as,...,aq}. Since U(F), U {a1,as,...,aq} is the union of two

compact sets, it is compact, hence we see that U(F') is compactly generated.  [J

As mentioned in the introduction to this article, we are particularly interested in
studying and understanding the structure of totally disconnected locally compact
groups, and understanding particular examples of totally disconnected locally com-
pact groups such as automorphism groups of trees is an important part of the
theory. The universal groups U(F) also form another example of a class of totally
disconnected locally compact groups since they are a closed subgroup of the totally
disconnected locally compact group Aut(7y). We summarise the results so far in

the following proposition:

Proposition 3.3. Let F < Sym(d). The group U(F) < Aut(Tg) is a compactly
generated, totally disconnected, locally compact Hausdorff topological group. Fur-

thermore, U(F') is discrete if and only if F acts freely on Tg.

3.2.1. Simplicity Results for Universal Groups. Here we give an outline
of some simplicity results for universal groups. We first start by recalling some
work of Tits in [Tit70] that gives a condition for when a group of automorphisms
acting on a tree is simple. First we describe Tits’ independence property which is a
vital part of understanding Tits’ simplicity theorem. Tits’ independence property

is often referred to as Property P in the literature.

Start by letting G be a group of automorphisms of an infinite locally finite tree T
without leaves, and P be a path in the tree 7 of either finite or infinite length.
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Define a function np : VT — VP such that mp(v), for v € VT, is the unique
closest vertex on the path P to v. For each vertex v on the path P, let F,, be the

restriction of Fixg(P) to the subtree 7r7§1(v). Then there is a natural map:

Op : Fixg(P) — [] F
veVP
which essentially describes an automorphism in Fixg(P) by what it does on the
subtrees 755" (v) (v € VT). We say that the group G has Property P, or Tits’
Independence Property, if the map ®p given above is an isomorphism for every

finite or infinite path P in 7.

Denote by Gt the subgroup of G generated by the fixators of edges in T i.e.
Gt ={(G. | e € VT). The following Theorem was proven by Tits’ in his article
[Tit70]; we do not give a proof of the result here, though, a more general result is
proven later in this chapter. This Theorem is often referred to as Tits’ Simplicity

Theorem.

THEOREM 3.4. Let T be a tree and G a subgroup of Aut(T). Suppose that G
does not stabilise any non-empty subtree or fix an end of T, and satisfies Property
P. Then every non-trivial subgroup of G normalised by G contains G*, and in

particular, G is either simple or trivial.

It is easy to show that the universal groups U(F') do not stabilise any non-empty
subtree or fix any end of 7; and satisfy Property P. As a result of Tits’ Simplicity
Theorem, the following result can be deduced about the simplicity of subgroups of
universal groups, which was first stated in the original paper on universal groups

by Burger and Mozes [BMO0O].

THEOREM 3.5. Let F < Sym(d). The following results hold:

(i) The group U(F)* is either simple or trivial

(i1) U(F)T has finite index in U(F) if and only if F' is transitive and generated by
point stabilisers, and in this case, U(F)T = U(F) n Aut(Tq)t and has index
2
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3.3. Groups Acting on Trees with Almost Prescribed Local Action

In this section we give a recount of the groups studied by Le Boudec in his paper
[LB16]. These groups, often referred to as Le Boudec’s groups, are groups of
automorphisms of a regular tree which generalise the universal groups construction:
the requirement that the local actions of each of the automorphisms have to be
contained in the subgroup F' is slightly weakened. The definition of Le Boudec’s

groups is given as follows:

Definition 3.6. Let F, F' < Sym(d) such that FF < F’. Retaining the notation
used in the previous section, define the groups G(F) = {a € Aut(7g) | o(a,v) €
F for all but finitely many v € V73} and G(F, F') = G(F) n U(F").

The group G(F,F’) is precisely the group of all automorphisms of 7; such that
o(a,v) is in F’ for all v € V75 and in F for all but finitely many v € V'73. These
groups can be thought of as a ‘relaxation’ of the requirements for the local action
in comparison to the universal groups. In the following, for a € G(F, F’), we will
say that a vertex v € V7T is a singularity of « if o(a,v) ¢ F. The collection of all

singularities of « is denoted by S(«).

The attentive reader may have already noticed that the groups G(F, F’) in many
cases will not be closed, and hence also not open in Aut(7;). Thus we do not give
these groups the subspace topology from Aut(7;). To understand the topology on

these groups, we prove the following result:

Proposition 3.7. Let G be an abstract group with a topological group H as a
subgroup. Then G admits a unique group topology such that the inclusion map
H — G 1is continuous and open provided that for all open sets U < H, gUg' n H
is open in H for all g,q' € G.

PrOOF. We show that the topology 7 on G generated by the left G-translates
of open sets in H satisfies the desired properties. It is easy to see that the left
G-translates of open sets in H form a basis for a topology on G and the inclusion
map is continuous and open with respect to this topology. It just needs to be shown
that the multiplication and inversion maps in G are continuous with respect to this

topology.
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To do this, we first show that the translations maps L, : G — G,z — gz and
Ry, : G — G,z xg~! for g € G are homeomorphisms. It is clear that these maps
are bijections since L -1 is the inverse of Ly and similarly for R,. Thus it suffices
to show that the maps L, and R, are open for any g € G. It is clear that L, is an
open map by definition of the topology. To show that R, is also open, note that

for any open set U < H, for ¢’ € G, Ug' can be written as:

Ug =g nUg =] g(Hng'UY)
geG geG

which is a union of left translates of open sets of H and hence is open in the given
topology on G. Thus it follows that R, is also open and hence L, and R, are
homeomorphisms. To complete the proof of the proposition, it will now be shown

that the multiplication and inversion maps in G are continuous.

Let (g:)ier and (g;)ier be two nets in G converging to g, ¢’ € G respectively. Then
since gH and Hg' are open neighbourhoods of ¢ and ¢’ respectively, we may find
nets (h;)ier and (h});er both converging to the identity such that g; = gh; and
g, = hlg for each i. It then follows that the net g;g; = gh;hlg’ converges to
gg’ since h;h/; converges to the identity in H. In a similar fashion, g;* = h; 'g™!

Lin G since h; ! converges to the identity in H. Thus this shows that

converges to g~
the multiplication and inversion maps are continuous and hence G is a topological

group with this topology. O

Since the subgroups of the form U(F)r for some finite subtree T' < 75 form a
neighbourhood basis of the identity in U(F), and for any g € Aut(7y), gU(F)rg~! =
U(F)g(r), it is easily seen that the groups G(F, F") satisfy the hypotheses of the
above proposition with H = U(F).

The groups G(F, F’) are then given the topology such that the inclusion map of
U(F) into G(F, F') is continuous and open. Thus, the collection of open neigh-
bourhoods of the identity in U(F') form a collection of open neighbourhoods of the
identity in G(F, F’). In particular, it follows from the results for universal groups
discussed in the previous section that G(F, F’) is also a totally disconnected locally

compact group and is discrete if and only if F' acts freely on €.
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The following lemma shows that even when an automorphism « € G(F) is not
contained in the universal group U(F'), the local action of « at each vertex still
behaves ‘reasonably’ nicely. The proof follows the one given in [LB16], as will a

number of the other results in this section.

Proposition 3.8. Given any o € G(F) and v € VTg, the permutation o(a,v)
stabilises the orbits of F acting on the set {1,2,...,d}.

PROOF. Let o € G(F') and let V,, denote the set of all vertices for which the
statement does not hold. Note that every vertex in V,, is a singularity of a. Suppose
for a contradiction that V,, is non-empty and let v € V,,. Then there must exist
at least two vertices v1,ve € V7 adjacent to v such that o(a,v) sends the labels
A({v,v1}) and A({v,v2}) to elements of different orbits. In a similar fashion, there
must exist another vertex v} adjacent to v; and distinct from v such that the label
of the edge {v1,v]} is sent to a label in a different orbit. Continuing this argument
indefinitely shows that V,, must be infinite which contradicts the fact that o € G(F')

since a can have at most finitely many singularities. O

Given a partition of the set 2, the Young subgroup with respect to the partition is
defined to be the maximal subgroup of Sym(d) stabilising the sets in the partition.
Given a subgroup F < Sym(d), one may consider the Young subgroup associated
to the partition of £ into F-orbits, which we will denote by F' < Sym(d). It is clear
that in this case ' < F. For the remainder of this article we will always assume
that the permutation groups F' and F’ used in the definition of G(F, F’) must be
contained in F. There is no loss of generality in doing this, since by the previous

lemma, if the local action of an automorphism in G(F') at a particular vertex is not

in F', then it must be contained in F.

We will need the following lemma in the proof of Proposition [3.10

Lemma 3.9. Let F, F' < Sym(d) such that F < F' < F. Fizve VT, andn e N.
Suppose that § € Aut(Ty) such that o(B,w) € F' for all w € B(v,n). Then there
exists an automorphism o € G(F, F') such that o(a,w) € F for all w € Tg\B(v,n),
and o and B agree on B(v,n + 1).
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PROOF. Given z € S(v,n), let V, denote the set of vertices w € VTy such
that the unique path from v to w passes through z. We may assume that g fixes
the vertex v; if not, consider the automorphism 8 = 43 where v € U(F) is the
automorphism sending G(v) to v and whose local action at every vertex is the

identity.

First we define « to fix v. Then « is determined by its local action at each vertex
in Ty, thus, it suffices to define o(a, w) for each vertex w € V7. Start by defining
o(a,w) = o(B,w) for each w € B(v,n). Then for each vertex z € S(v,n) and
w e Q, since F < F, choose a permutation #(w,z) € F (not necessarily unique)
such that o(8,z)(w) = 0(w, z)(w). Then given w € V,, x € S(v,n), define o(o, w)
to be O(w, x) where w € Q is the unique label on the edge with origin « which lies

on the path between z and w. It can be easily seen that this is a well defined

automorphism « satisfying the required properties. O

As a result of the preceding lemma, we can now prove the following result:

Proposition 3.10. Let F, F’ < Sym(d) such that F < F' < F. Then the following
properties hold:

(i) The closure G(F,F') of G(F,F") in Aut(Tg) is equal to U(F")
(i) G(F) is dense in Aut(Ty) if and only if the action of F' on Q is transitive

Proor. For (i), first note that G(F, F’) < U(F’), and since U(F") is closed
in Aut(74), we must have that G(F,F') < U(F’). We just need to show that

U(F') € G(F,F"). Let « € U(F'). By the previous lemma, for each n € N, there
exists an automorphism «,, € G(F, F’) such that «a,, agrees with a on B(v,n) and
o(an,w) € F for each w € VT3\B(v,n). Then the sequence (a,)%_; < G(F,F’)
converges to o. Hence o € G(F, F’). This completes the proof of (i)

For (it), the reverse direction follows by applying (i) and using the fact that F =
Sym(d) if F is transitive and U(Sym(d)) = Aut(74). Conversely, if the action of

F is not transitive then G(F) = U(F) is a strict subset of Aut(7y) since F' is not

transitive. O
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This proposition confirms the fact mentioned earlier in the section that the groups
G(F, F") are not generally closed in Aut(7g). Indeed, G(F, F’) is closed if and only
if it is equal to the universal group U (F”). This will be an interesting fact in relation
to material we look at later in the article. Similarly to universal groups, the groups
G(F, F') are also compactly generated. We give the proof of this result below, but
first we need to prove a short lemma. In the following, for v € V73 and n € N,
G(F, F')(y,n) denotes the set of all automorphisms in G(F, F') who fix the vertex

v and have all their singularities contained in B(v,n).

Lemma 3.11. Let F, F’ < Sym(d) such that F < F' < F. For any v e VTy and
n €N, the groups G(F, F')(, n) are compact.

PROOF. For a fixed v € VTy, since U(F), is a compact open subgroup of
Aut(73), it is also compact open in G(F, F"), ) for any n € N by definition of
the topology on G(F,F’). It can also be checked that U(F), has finite index in
G(F,F')(y,n) for any n € N. Hence, we can write G(F,F")(, ) as a finite union
of translates of U(F),. Thus G(F, "), is compact open in G(F, F") being the

finite union compact open sets. (I

Proposition 3.12. Let F,F’' < Sym(d) such that F < F' < F. The groups
G(F,F") are compactly generated.

PROOF. Given g € G(F, F') with at most m singularities, we claim that there
exists vertices v1, vz, ..., Um € VTa, gs € G(F, ')y, o) for each i, and h € U(F) such
that g = hg192 - - - gm- We prove this by induction on m, the number of singularities
of g. If m =0, then g € U(F') and the result is clear. Now suppose that n € N and
the result holds for all m < n, and suppose that g has n singularities. Let v e VTy
be a singularity of g. By vertex transitivity of U(F'), we may find an element
h € U(F) such that ¢’ = hg fixes the vertex v. Since o(h,w) € F for all w € Vg,
it is easy to see that g and ¢’ have the same singularities. By Lemma there
exists k € G(F,F')(,0) such that o(k,v) = o(¢’,v). Then ¢" = g’k~! = hgk™!
fixes B(v,1). Since k € G(F,F"),,0), the singularities of ¢” are precisely all the
singularities of ¢’ different from v. Hence, ¢” has at most n—1 singularities, and thus

by the induction hypothesis, there exists vi,ve,...,vn—1 € VT4, gi € G(F, F')(, 0
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for each 7 and h' € U(F) such that ¢ = h'g1g2---gn—1. It then follows that
g=h" R gigs- - gn_ik is in the desired form.

Now, since U(F) is vertex transitive and gG(F,F')(, 097" = G(F,F')(gv,0) for
any g € U(F), we see that the group generated by U(F) and G(F, F"),, o) for a
fixed vo € V7Tg contains G(F, F"), ) for every w € V73. By the arguments in
the previous paragraph, this means that U(F) u G(F, F')(,,.0) generates G(F, F").
Thus if K is a compact generating set for U(F'), which exists by Proposition
then K U G(F, F')(y,,0) is a compact generating set for G(F, F"). O

We summarise the results of this section in the following proposition:

Proposition 3.13. Let F,F’ < Sym(d) such that F < F' < F. The groups
G(F,F’) are compactly generated, totally disconnected, locally compact Hausdorff
groups. Furthermore, G(F, F") is discrete if and only if F' acts freely on Q.

Hence, this gives us more examples of (non-discrete) compactly generated, totally

disconnected locally compact groups.

3.3.1. A Simplicity Result for the Groups G(F, F’). In a similar fashion
to the simplicity result for universal groups, there are also some results concerning
simplicity of subgroups of Le Boudec’s groups G(F, F’) under certain assumptions
on F and F’. For the case of universal groups, the proof that the subgroups U (F')"
are simple uses the fact that the universal groups satisfy Tits’ Property P, and
then the result follows directly from Tits’ Simplicity Theorem. In a similar way, Le
Boudec uses a weaker version of Tits’ Property P for the groups G(F, F'), which he
calls the edge independence property. The edge independence property is obtained
by restricting the path to be a single edge in the definition of Property P. Using
some results concerning the edge-independence property, the following simplicity

result can be deduced, which can be found as Theorem 4.13 in [LB16]:
THEOREM 3.14. Let F < F' < Sym(d). Suppose that F is transitive and F' =

(F.,F]UF,|weQ). Then the group G(F, F")t is simple.

Also, define the group N(F, F’) = {({G(F,F")e,G(F, F").] | e € ETy). Le Boudec
also gives a proof of the following result in [LB16]:
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THEOREM 3.15. Let F < F' < F” < Sym(d) such that F' has index two in F”
and the type-preserving subgroup of G(F, F") is simple. Then N(F,F’) is a simple
subgroup of index eight in G(F, F').

3.4. k-closures of Groups Acting on Trees

In the paper [BEW15], Banks-Elder-Willis provide another novel construction of
groups acting on trees. Given a group G acting on a tree 7, they define, for each
k € N, the k-closure G*) of G which also acts as a group of automorphisms on
T, and in a sense captures the local action of G on balls of radius k in 7. Tits’
Property P is also generalised in this paper which results in a more general version
of Tits’ simplicity theorem, and it is shown that under certain assumptions each
of the groups G*) has simple subgroups similar to what we discussed earlier for
universal groups. This work on k-closures also motivates a more general definition
of universal groups where the local action is prescribed on balls of radius k in 7.

Here we give an overview of this work.

First we define what is meant by the k-closure of a group; throughout this section

we will be assuming that 7 is an arbitrary locally finite tree.

Definition 3.16. Let G be a group of automorphisms of a tree 7. For fixed k € N,
the k-closure of G, denoted G¥), is defined as:

G® = {ge Aut(T) | Vv € VT,3h, € G such that 9Bw.k) = holBwr)}

The groups G*) are precisely all the automorphism of the tree 7, such that on balls
of radius k around each vertex, they agree with an element of G. The k-closures of

a group G enjoy the following properties:

Proposition 3.17. Let T be a tree and G < Aut(T). Then, for any k € N, the
following hold:

(i) G < GW for each ke N

(i1) G*) is a closed subgroup of Aut(T)
(iii) GO < G® for alll >k
(1) Men G =G
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(v) The orbit of v e VT under the action of G®) is equal to the orbit of v under
the action of G.

PROOF. (i): This is clear since every automorphism g € G agrees with itself on

B(v,k) for allve VT.

(ii): We will show that the complement of G*) in Aut(7) is open. For any g €
Aut(7T)\G™®), there exists a vertex v € VT such that g does not agree with any
element of G on B(v,k). Thus U(g, B(v,k)) is an open set that does not contain
any element of G*) ie. U(g, B(v,k)) < Aut(T)\G®). Since this holds for any
g€ Aut(T)\G®), we see that Aut(7)\G* is open and hence G*) is closed.

(iii): Let g € G®. For every vertex v € VT, there exists a g, € G such that g agrees
with g, on B(v,l). Then, clearly g agrees with g, on B(v, k) since k < [. Since this
holds for every vertex v € VT, we see that g € G,

(iv): By (i) G < G for each k, and by (ii) G*) is closed, hence G < G® for each k.
Thus it follows that G < (,cy G¥). So it just remains to show that [,y G*® < G.
To do this, we will show that for any g € (,cy G¥) | every open set of g intersects
G non-trivially and hence it follows that g € G i.e. [),oyG® < G. Indeed, if
9 € Mpen G™ and U is open neighbourhood of ¢ in Aut(T), then U must contain
U(g, B(v,k)) for some v € VT and k € N since B = {U(g, B(v,k)) | ve VT, k € N}
forms a basis for the topology on Aut(7). But U(g, B(v,k)) contains an element

of G since g e G®¥). Hence U intersects G and this proves (iv).

(v): Since G < G¥), the orbit Gu is contained in G*)v. Conversely, if v € G*y,
then there exists an automorphism g € G*) that maps v to v’. Then, by definition
of the group G*), there is an automorphism in G that agrees with g on B(v, k) i.e.
there must exist an automorphism in G that maps v to v’. Hence G*)v < Gv and

the result follows. O

Just like the previous groups we have looked at in this article, the k-closures are
non-discrete under certain circumstances. The proof of the following theorem can

be found in the paper by Banks-Elder-Willis.



26 3. GROUPS ACTING ON TREES

THEOREM 3.18 ([BEW15]). Let T be a tree and G < AutT. Fiz k € N and
suppose that G does not stabilise any non-empty proper subtree of T. Then G*) is
non-discrete if and only if there is an edge (v,w) € ET and g € G such that:

g |B(v,k)r\B(w,k)= Landg |B(w,lc)5"é 1

Equivalently, G®) is discrete if and only if Fixg(B(v, k) n B(w, k)) = {1} for every
(v,w) e ET.

This theorem has a number of corollaries which can be found in [BEW15] that give
relations between the properties of a group G and its k-closure G*). We now move

on to discuss some independence properties that will be used later in the article.

3.4.1. Independence Properties and Simple Subgroups. Earlier in this
chapter we briefly discussed Tits’ Property P and saw his simplicity theorem that
says that any group acting on a tree satisfying Property P and not stabilising
any proper non-empty subtree or fixing an end of the tree has a simple subgroup
GT. Here we give an overview of two other independence properties, Property
1P, and Property Py, for groups acting on trees, and prove a generalisation of
Tits’ Simplicity Theorem. These results also have consequences in the context of
k-closures of automorphism groups of trees. Once again, these results are from the

paper [BEW15].

First we give the definition of Property I P, which is a special case of Property Py
that will be defined shortly:

Definition 3.19 (Property IP;). Let T be a tree and G < Aut(7). Fix k € N and
let e = (v,w) € ET. Define

Fy.c := Fixg(B(v, k) n B(w, k)).

Then G satisfies Property Py if for every edge e = (v,w) € ET,

Fk,e = FiXFk,e(’]-(v,w))FiXFk‘e (7-(w7v))
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where we recall that 7, ., and T, .) are the semi-trees containing w and v respec-

tively obtained from 7 by removing the edge (v, w).

When k& = 1, Property IPy is just Tits’ Property P with the path P replaced
by a single edge. This is precisely what Le Boudec called the edge independence
property that we discussed in the previous section of this chapter and was used to

prove some simplicity results for the groups G(F, F”).

We note that the k-closure of a group acting on a tree always satisfies Property

IPk:

Proposition 3.20. Let G < Aut(T) and k € N. Then G®) satisfies Property IPy.

PrOOF. Fix an edge e = (v,w) € ET. Since Fixp, . (T(vw)) and Fixp, . (T(w,v))
both fix B(v,k) n B(w, k), it follows that Fixr,  (T(v,w))Fixr, . (Taw,ew)) does to.
Hence Fixp, . (T(v,w))Fixr, . (Tww)) S Fre. Thus we just need to show that Fj .
Fixp, , (T(v,w))FiXFk,e(T(w,v))-

Let g € Fy.. Define an automorphism g; of 7 by g1 = ¢g on B(u, k) for every
u € VT4, and trivial on B(u, k) for every u € VT, ). Then gy € Fixp,  (T(y,w)) S
G®) . Similarly define an automorphism gy by go = g on B(u,k) for every u €
VT (v,w) and trivial on B(u, k) for every u € VT, .). Then g2 € Fixp, , (T(w,)) and
g = g192. Thus g € Fixp, , (T(y,w))Fixr, . (T(w,0)) which completes the proof. O

We now give the definition of Property Py, which is a generalisation of Tits’ Prop-
erty P discussed earlier in this Chapter. It will be seen shortly that groups satisfying
Property Py that do not stabilise any proper subtree or fix an end of 7 have a simple
subgroup G+ similar to the case of groups satisfying Property P. In the following,
given a subtree T' < T, T* will denote the subtree of 7 spanned by the vertices at

distance at most k from T'.

Definition 3.21 (Property Py). Let G < Aut(7) and P a path in T either of finite
or (bi-)infinite in length. Let mp be the nearest point projection of VT onto VP as
defined earlier, and denote by F;_, ), for v € VP, the restriction of Fixg(PF1)
to 7r7§1(v). Then we say that G has Property Py if the canonical homomorphism

®p : Fixg(P* ™) = [, evp Fli—1,0) is an isomorphism for every path P in 7.
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We now show that for closed subgroups of Aut(7), Property P, is in fact equivalent
to Property I P,. Maintaining the notation used in the previous definition, we first

prove the following lemma:

Lemma 3.22. Let G < Aut(T) and suppose that G satisfies Property IPy. Let P
be a finite path in T. Then the canonical map ®p : Fixg(PF 1) — [ Toevr Fli—1,0)

is an tsomorphism.

PROOF. The proof is by induction on the length of the path P. If the length of
P is one, then since G satisfies Property I Py, this implies that ®p is an isomorphism

by definition.

Now suppose that the result holds for all paths of length less than or equal to m —1
and suppose that P has length m. It is clear that ®p is injective, it just needs
to be shown that ®p is surjective. Let vy,vs,..., v, denote the vertices on the
path P and let []" | g; € [T\ Flr_1,,) Where g; € Fi_y,,) for i = 1,...,m. Let
P’ denote the path P with the vertex v, and the adjoining edge removed, and

®pr : Fixg((P)1) = [Tyevpr Fik—1,0) the canonical homomorphism.

Define g to agree with g,,_1 on wgl(vm,l), Gm ON wgl(vm) and the identity else-
where. By the induction hypothesis, there exists g € Fixg((P’)*~!) such that
Opi(g) = 9192~ Gm_2§. Since g agrees with g,, on 7 1(v,,), g fixes P*~! and
hence g € Fixg(P*~1). Also ®p(g) = [[;~, g which completes the proof. O

Proposition 3.23. Let G < Aut(T) be a closed subgroup. Then G satisfies Prop-
erty I Py if and only if G satisfies Property Pj.

PrROOF. It is clear that if G satisfies Property Pj then G satisfies Property I Py.
So we just need to prove that if G satisfies Property IP; then it satisfies Property
Py. By the previous lemma, it just remains to be shown that ®p : Fixg(P*~1) —

[ loevp Fk—1,0) is an isomorphism for every infinite path P < 7.

So suppose that P is an infinite path, and lets assume that it is bi-infinite; the proof
is essentially the same for when P is a ray. Let (v;);ez be the vertices on the path P
and denote by P, the path from v_, to v,,. To prove the proposition, we just need
to show that ®p is surjective. Let [[;.; 9 € [ [,evp Fk—1,0) Where g; € Fip_1 4,
for each i. We need to find g € Fixg(P*"!) such that ®p(g) = [ [,z 9i-
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The previous lemma gives is a sequence of elements {G, }nen, Gn € Fixg((Pn)*~1)
for each n, such that ®p_(gn) = ¢_,,9—n+1 " Gn-19,,, where g/, (resp. ¢’_,,) denotes
the automorphism of 7T7;i (vn) (resp. ﬂ;i(v,n)) that agrees with g; on 7p(v;) for
i = n (tesp. i < —n). By closedness of G, there exists g € Fixg(P*~!) such
that g, — g. Since ®p, (§,) agrees with ®p(g) on 7' (v;) for —n < i < n, we
must have that ®p (gn) — Pp(g) as n — o0. But ®p_ (§n) — [[;cz 9, hence,
®p(g) = | [,z 9s which completes the proof. O

Thus, this proposition shows that for closed subgroups of Aut(7), to check that the
subgroup satisfies Property Py, we just need to check that ®p is an isomorphism

whenever the path P is an edge in T.

3.4.2. An Interlude on Some Work of Tits’. For use in the proof of
the simplicity theorem, and for use in later chapters of this article, we recall the
following results of Tits’ concerning group acting on trees without stabilising any
proper non-empty subtree or fixing any end. The first result is Lémme 4.4 in

[Tit70]:

Lemma 3.24. Suppose that N and G are non-trivial subgroups of Aut(T) and N
is normalised by G. If G does not stabilise any non-empty subtree or fir any end

of T, then the same is true for N.

The following result is Lémme 4.1 in [Tit70]:

Lemma 3.25. Let G < Aut(T). The following are equivalent:

(i) G does not stabilise any proper non-empty subtree of T .
(i) The orbit Guv of any vertex v € VT has non-empty intersection with any

semi-tree in T .

The following proposition, which can be found as Proposition 3.4 in Tits’ article,

will also come in handy:

Proposition 3.26. If G < Aut(7) contains no translations, then G is contained

in either the stabiliser of a vertex, the stabiliser of an edge or the fizator of an end.
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3.4.3. A Generalisation of Tits’ Simplicity Theorem. We now finish the
section by giving a proof of a generalised version of Tits’ simplicity theorem seen
in [BEW15|]. We will follow the proof given by Banks-Elder-Willis. The proof is
essentially repeating the proof of Tits’ original simplicity theorem seen in [Tit70],
however, with this more general k-closure notation substituted. First we prove the

following lemma which is an analogue of [Tit70, Lémme 4.3]:

Lemma 3.27. Let G < Aut(T) be a closed subgroup and suppose that g € G is a
translation along a bi-infinite path P. Let K be the fixator of P*~1 in G. Then, if
G satisfies Property Py, K = [g, K] = {gkg™'k~' : ke K}.

Le

PROOF. Since g is a translation along P, g stabilises P* setwise, hence, gkg™
K for all k € K. This means that [g, K] € K. To show the other inclusion, let
k € K. We will show that there exists a k' € K such that k = gk’g~'k'~!. Using
the notation as in Definition and identifying VP with Z, since G satisfies

Property P, we may write k = [[,., fi where f; € F,_ ;) for each .

k! satisfies the

i€Z Vi

We define &’ by finding k} € F(;_1 ;) for each i so that k' = []
required equality. For i € Z, let a; : Fx_1,4 — Fx—1,i+4) be the automorphism
induced by conjugating by g, where d denotes the distance that g translates the
path P. We define the k] inductively. For 0 < i < d — 1, choose k] € F(;_1
arbitrarily. If ¢ > d define k] = k;lai,d(kz/-_d) and if i <0 &, = a;l(fHdng). O

To be used in the following theorem, we make the following definition:

Definition 3.28. Let G < Aut(7) and fix k € N. For e = {v,w} € ETg let Fj ¢ :=
Fixg(B(v, k) n B(w, k)). We define the subgroup G+ by G** := (Fj. . | e € ET).

We finally come to the generalisation of Tits’ Simplicity Theorem:

THEOREM 3.29. Fiz k€ N and let G < Aut(T) such that G does not stabilise any
proper non-empty subtree or an end of T, and satisfies Property Py. Then every
nontrivial subgroup of G mormalised by G+ contains GT*. In particular, GT* is

either simple or trivial.

PrOOF. Assume the hypotheses of the Theorem and let H be a nontrivial

subgroup of G normalised by G**. Since G satisfies Property Py, for every edge
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e = {v,w} € ET, Fy. := Fixg(B(v,k) n B(w,k)) = Fixg, , (T(,w))FixX(Tw,w))-
To prove the theorem, we just need to show that for every edge e = {v,w},
Fixp, , (Tww)) € H and Fixp, , (T(w,0)) S H, and it is suffice to solely show that
Fixp, . (Tw,w)) S H since the other inclusion will follow from the same argument

by interchanging the roles of v and w.

Since GT* is normal in G, by Lemma G™* does not stabilise any non-empty
subtree of T or fix any end of 7. By Lemma [3.24] again, H also satisfies these
properties since H is normalised by G**. Also, by Proposition there is a non-
trivial translation h € H. Let P be the bi-infinite path along which A translates
and let —oo and oo denote the ends of P. We claim that P < T, .-

By Lemma Hv A Ty # & for all v € VP, hence, there is g € H with
9(P) N Tiww) # . Replacing P and h with g(P) and ghg~" if necessary, we may
assume that P N 7, ) # . This intersection must be atleast an infinite path, if

not, a biinfinite path. Lets suppose that o is the end contained in P N T, -

Since H does not fix any end of T, we may find f € H such that f(—o0) ¢ {—o0, w0},
moreover, f~1(P) does not contain any representative of the end —oo. If 7 : VT —
VP is the projection of 7 onto P, then either (7, ,)) is a single vertex if P <
T(v,w) Or an infinite path that forms a representative for the end —oo. Since f P
does not contain any representative of the end —oo, the projection 7(f~1(P)) must

be contained in some representative of oo that is also contained in P.

Let P be the shortest representative of co such that 7(f~1(P)) € P < P. Choose an
integer n such that h"(f~'(P) and 7(7T(,,.)) are distance k a part, and, moreover,
we may choose such an n so that h"(f~'(P)) S T(yu). Then, by replacing P
and h by h"(f~1(P)) and A" f~'hfh™", we may assume that P and P*~! are
contained in T, .. If K = Fixp,  (PF71), then K = G**, and by the previous
lemma, K = [h, K] € H since H is normalised by G™*. Since P*~1 < T, ),
Fixp, , (Tww)) € K < H which completes the proof. O

3.4.4. A k-closures analogue of Universal groups. Motivated by this
work on k-closures by Banks-Elder-Willis, in [Tor20], among other work, Tornier

defines a generalised notion of universal groups where the local actions are defined
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on balls of radius k£ around each vertex instead of on balls of radius one like in the
standard case of universal groups. These groups, denoted by Uy (F'), share a number
of similar properties with the universal groups discussed earlier in the chapter and
also satisfy Property P, which will be useful to us later in the article. First we give
the precise definition of these groups and we will follow similar notation to that

used in [Tor20]:

Consider the regular tree T4 with its legal labelling A : ET; — € as discussed
earlier in the case of universal groups. Denote by By a tree isomorphic to a ball
of radius k in 73 with the corresponding legal labelling. Then there exists, for each
vertex v € V'Ty, a unique label preserving isomorphism A,  : B(v, k) — By from
B(v,k) € T4 onto By . For each automorphism o € Aut(73), its k-local action at

a vertex v € V7T is then defined as:

or(a,v) = Aa(v),k © QO )\;}c

which can easily be seen to be an element of Aut(Bg ). The k-closure analogue of

the universal groups is then defined in the obvious way as:

Definition 3.30. Let F' < Aut(Bgy). The universal group Uy (F') is defined as
Uk(F) :={a € Aut(By) | ox(c,v) € F for all v e VT4}.

We remark that in the case when k = 1, we just have the usual definition of universal
groups. Similar to the standard universal groups, the groups Uy (F) satisfy the

following properties:

Proposition 3.31. Fiz k € N and let F < Aut(Bgy). The following properties
hold:

(i) Up(F) is closed in Aut(Tg)
(ii) Ug(F) is vertex-transitive

(#ii) Up(F) is compactly generated.

PRrROOF. The proof of parts (i) and (ii) is identical to the proof for universal
groups that we saw earlier. For (iii), first note that U;({id}) € Ug(F). From
the proof of Proposition v), recall that there exists a, o, ..., aq € U1 ({id}) <
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Ui (F) such that Uy ({id}) = (a1 )y={agy*- - -#{ag). Then following a similar argument
to the proof of Proposition v), it can be shown that Uy (F), v {aq, a9, ..., aq}

is a compact generating set for Uy (F). [

In particular, from the proposition, we see that the groups Ug(F) are compactly
generated, totally disconnected locally compact groups. It is also worth noting for

use later that these groups also satisfy Property P:

Proposition 3.32. Let F' < Aut(Bgyx) and fiz k € N. The group Uy(F') satisfies
Property Py.

PROOF. Since Ui (F) is closed, by Proposition we just need to show that
Uy (F) satisfies Property I Py,. Solet e = {v,w} € ETgand F}, . = Fixy, (r)(B(v, k)n
B(w, k)). It is easy to see that Fixg, ,(T(ww))Fixe, . (Tw,v)) € Fixy, (#)(B(v, k) n
B(w, k)) so we just need to show that Fixy, () (B(v, k)nB(w, k) S Fixg,  (Tww) ) Fixe, . (Tw,v))-
To this end, let g € Fixy, (py(B(v,k) n B(w,k)). Define an automorphism g; so
that oy (g1,v) = ox(g,v) for v e VT, ) and o4 (g1,v) = id for v € VT, . Simi-
larly, define go such that oy (g1,v) = ox(g,v) for v e VT, ) and ox(g1,v) = id for
v € VT (yw)- It can then be seen that g € Fixp, . (T(w,»)) and g2 € Fixg,  (Tiv,w))
and g = g1g2. Thus it follows that g € Fixp, , (ﬁv,w))FiXFk,e(ﬁw,v)) which com-
pletes the proof. ([l

Using the simplicity theorem given earlier, the following result is then deduced:

Corollary 3.33. Let F < Aut(Bg) and fir k € N. The group Uy (F)™* is simple.

3.5. Almost Automorphism Groups of Trees

Almost automorphism groups of trees, first studied by Neretin in [Ner84], and
commonly referred to as Neretin’s groups, are another novel example of groups of
automorphisms acting on infinite trees. Specifically, given a regular rooted tree
without leaves, the boundary of the tree, which can be identified with all the infi-
nite rays starting at the root, forms a metric space under the choice of a suitable
metric. This metric space is in fact a compact ultrametric space. The almost au-

tomorphism group of this tree can be recognised as a group of homeomorphisms
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of the boundary of the rooted tree, and these homeomorphisms are occasionally

referred to as ‘spheromorphisms’ of the tree.

Almost automorphism groups of regular rooted trees enjoy many similar properties
to the universal groups and Le Boudec’s groups already discussed in this chap-
ter: they are compactly generated, totally disconnected, locally compact groups.
These groups also have the added properties of being non-discrete and abstractly
simple, which was not always the case in the examples of universal groups and Le
Boudec’s groups. In the following, we give the reader an introduction to almost
automorphism groups of trees and discuss some of their basic properties in more

detail.

3.5.1. Metric Space Structure of the Boundary of a Rooted Tree.
Here we comment on the metric space structure of the boundary of a rooted tree.
Let 74 denote the rooted tree such that the root has degree k, and every other
vertex has degree d + 1. As discussed in the preliminaries section, the boundary of
a tree is the collection of all equivalence classes of infinite rays, where two rays are
considered equivalent if their intersection is also an infinite ray. In the case of the
rooted tree Tq , the boundary 074 ) can be naturally identified with the collection
of all infinite rays starting at the root vertex in 7g . Given any ray £ € 074, we
will write £ = (v;)72, where the v; are the vertices on the ray £ and v; is the root
vertex. Then let &, denote the path (v;)!"; in Tgx. Given two rays £,& € 0Tqk,
define €(§,&") = sup{n e N | £, = &, }. This leads to the definition of a metric d on
T by

(&, ¢ = (&8

which is often called the visual metric. We use the convention that if e(£, ') = oo,
then d(£,£') = 0. Tt is easy to see that €(£,¢) = min{e(§,N), e(N, ()}, for §,(, A €
07a.; it follows that d(&, ) < max{d({, \),d(A, ()} and hence 074 is an ultramet-
ric space. It can be shown that (074, d) is in fact a compact ultrametric space
and homeomorphic to the cantor set. It is easy to see why this is the case for the
binary rooted tree: the boundary can be identified with the collection of all infinite

binary strings, which is often taken as the definition of the cantor set.
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Before moving on to defining almost automorphism groups of trees, we note that
given & = (v;){2; € 0Ta, the ball B(§ e™™") is precisely 07}, where 7, denotes
the rooted subtree hanging below v, in 7;%. Indeed, B(£,e™") is precisely all
the infinite rays in 074 that agree with £ on the vertices vy, ..., v, which can be

naturally identified with 07;. Pictured below is a ball in the rooted tree 73 .

3.5.2. The Almost Automorphism Group of 7; ;. We will give two dif-
ferent definitions for an almost automorphism of the tree 7; ;. The first definition
provides a better visual picture and intuition than the second. That being said,
the second definition given here is much more refined and is seen in many papers

throughout the literature.

Given a finite subtree T of Tg x, we call T' complete if for every vertex v € VT that
is not a leaf, all the vertices adjacent to v in 7 are also contained in 7. Following
the paper [Led19], given two finite complete subtrees T1 and T of T4k, an honest
almost automorphism of Tq . is a forest isomorphism ¢ : T4 x\T1 — Tq,x\T2. Then
define an equivalence relation on the collection of all honest almost automorphisms
as follows: let T1,T%,T],Ty be finite complete subtrees of Ty and ¢ : Ty x\T1 —
Tax\T2 and ¢ : Tgp\T] — Tax\T5 two honest almost automorphisms. Define an
equivalence relation by ¢ ~ 1 if and only if there exists a finite complete subtree

T < Tax containing Ty U Ty such that ¢|7, \r = ¥|7, \7-
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a’ A

An honest almost automorphism

Definition 3.34. An almost automorphism of Ty, is an equivalence class of honest

almost automorphisms under the equivalence relation ~.

The almost automorphism group AAut(7g ) is defined as the collection of all almost
automorphisms of 73 ;. Essentially an almost automorphism permutes subtrees of
Ta,k, and two almost automorphisms are considered equivalent if they have the

same action on the boundary of 7g .

Composition of almost automorphisms is defined as follows: given two almost au-
tomorphisms [¢] and [¢], choose representatives of the equivalences classes, say,
@ Tar\T1 — Tax\T2 and ¢ : T \T) — Tax\Th respectively. Let T < Ty
be a finite complete subtree such that T' contains T u T4 and choose finite com-
plete subtrees 75,7, < 74 such that there exists honest almost automorphisms
@+ Tap\T — Tar\T5 and 1// Tax\Tx — Ta1\T which are also representatives of
[¢] and [¢] respectively. We may then compose these representatives and define
[e

lo[¥] =[& o).

We will now state the second, more refined definition. This definition can be found
for instance in the paper by Le Boudec-Wesolek [LBW19]. Given two metric space
(X,dx) and (Y,dy), amap ¢ : X — Y is called a homothety if there exists a C € R
such that dx (z,z") = Cdy (p(x), (")) for all z,2" € X. An almost automorphism

can then also be defined as follows:

Definition 3.35. An almost automorphism of Tij is a homeomorphism ¢ €
Homeo(07g,) such that there exists a partition of 075, = | ]I, B;, where B;

is a ball in 074, for each ¢, and ¢ is a homothety when restricted to each of the B;.
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When Tg is a regular tree, the groups AAut(74) are commonly referred to as
Neretin’s groups, as these groups were first studied by Neretin in [Ner84]. To
understand the topology on the groups AAut(74,x), we refer back to Proposition
First note that the group Aut(74 %) can be identified as a subgroup of AAut(7gx).
If we let G = AAut(Tqx) and H = Aut(74%), it can be shown that these groups
satisfy the hypotheses of Proposition Thus, the groups AAut(7; %) are given
the unique group topology such that the inclusion map of Aut(7g ) into AAut(7g k)
is continuous and open. The groups AAut(7g ) then become totally disconnected
locally compact groups with this topology. It is further the case that these groups
are compactly generated and non-discrete. In Kapoudjian’s paper [Kap99], it is
also shown that Neretin’s groups are always abstractly simple. We summarise these

comments in the following theorem:

THEOREM 3.36. The groups AAut(Tq ) are (abstractly) simple, compactly gener-

ated, non-discrete, totally disconnected, locally compact groups.






CHAPTER 4

Two Properties of Totally Disconnected Locally
Compact Groups

4.1. Cartan-like Decompositions

In the theory of Lie groups and algebraic groups, studying decompositions of the
groups is a useful tool in understanding the structure of the groups. Decompositions
allow one to break the group down into smaller subsets, and by understanding the
structure of the smaller, often easier to understand subsets, one can infer structural
information about the whole group. The Cartan decomposition is a particularly
well known decomposition studied in Lie theory. Given a group G and a compact
subgroup K < G, a Cartan decomposition of G with respect to K is a double coset

decomposition of the form:

G=| | Kak
acA

where A € G is a set of coset representatives.

In the theory of totally disconnected locally compact groups, some recent work
has involved understanding whether results about Lie groups and algebraic groups
transfer across to totally disconnected locally compact groups. Following this idea,
in the paper [CW20], it was shown among other results, that the automorphism
group of a label-regular tree admits a Cartan-like decomposition, and as a result
of this, every continuous homomorphism from the simple subgroup Aut*(7z) has
closed range. Both these properties are shared in common with simple Lie groups.
This work then leads to defining two properties, the contraction group property and
the closed range property, which will be discussed shortly. The closed range property
has an intimate connection with the contraction group property and Cartan-like

39
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decompositions of groups. We first recall some of the work from this paper, in
particular, the result regarding Cartan-like decompositions of automorphism groups

of label-regular trees:

THEOREM 4.1. [CW20, Theorem 3.1] Let T, be a label-regular tree with labels in
a set, , and let K = Aut(T,), for a fized vertex v e VT,. Let A be the set of all
finite sequences in € that are compatible with T, and begin and end with the label
A(v). For each ac € A, choose vy, € VT, and g, € Aut(T,) such that the sequence of
labels of vertices on the unique path from v to v, is @ and go(v) = v. Then the

double cosets Kgo, K, a € A, are pairwise disjoint and

Aut(T,) = |_| K¢ K.
acA

Now, given a group G and a sequence (g;)ic; S G, we define the contraction group of
the sequence, denoted con((g;)iez), to be con((g:)ier) := {z € G | gizg; ' — idg}. It
was shown in [CW20], that if we take any infinite subset of coset representative in
the above Cartan-like decomposition of Aut(7,), then either the subset is bounded
or has a subsequence with non-trivial contraction group. This result led to the
fact that any continuous homomorphism from the simple subgroup Aut*(7,) <
Aut(T,), has closed range. In the remainder of this article, we will be aiming to
further understand these properties in a broader context than what was studied in
[CW20]. From now on, we will agree to use the following terminology for these

properties:

Definition 4.2 (Contraction Group Property). Let G be a topological group,
K < G a compact subgroup, and A < G such that G admits the Cartan-like
decomposition G = | |,.4 KaK. We say that this decomposition has the contrac-
tion group property if every sequence of elements in A is either bounded or has a
subsequence with non-trivial contraction group. We will say that a group G has
the contraction group property if it admits a Cartan-like decomposition satisfying

the contraction group property.

Similarly, we define the closed range property as follows:
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Definition 4.3 (Closed Range Property). A topological group G is said to have
the closed range property if every continuous homomorphism ¢ : G — G, for an

arbitrary topological group G, has closed range i.e. p(G) is closed in G'.

Later it will be shown that the contraction group property for a group G does
not depend on the choice of compact open subgroup K, however, it is not true in
general that the contraction group property is independent of the choice of coset
representatives. This will be discussed in more detail later. In the main theorem of
[CW20], it was essentially shown that any simple group satisfying the contraction
group property also has the closed range property. This is a generalisation of
Theorem 4.1 in [CW20] and will be proved later in this chapter as well. This idea
will be utilised to prove some more general closed range results for a larger class of

t.d.l.c. groups acting on trees that were discussed in the prior chapter.

We now proceed to extend this work by developing some more general results

concerning the contraction group and closed range properties.

4.2. The Contraction Group Property

In this section we will prove some more general results concerning the contraction
group property. First we show that the contraction group property does not depend

on the choice of compact open subgroup:

Proposition 4.4. The contraction group property does not depend on the choice

of compact open subgroup in the Cartan-like decomposition.

PROOF. Let G be a topological group and suppose that there exists a compact
open subgroup K < G, and a set of coset representatives A € G such that G ad-
mits a Cartan-like decomposition G = | |,. 4, Ka satisfying the contraction group
property. Let K’ < K be another compact open subgroup of G. By compactness
of K, there exists elements g1, ..., g, € G such that K = | |, g;K’. Then G also
decomposes as G = | |,c 4 Ll; ; K'(g;'ag;)K'. Now suppose we have a sequence of
coset representatives (hy){_, < {g;lagj}aeA,i7je{172,__,7n}. We need to show that the

sequence (h;), is either bounded or has a subsequence with non-trivial contraction

group.
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If the sequence is bounded, we are done, so we may suppose that it is unbounded
and show that it has a subsequence with non-trivial contraction group. Since there
is only finitely many g;, by passing to a subsequence of the h;, we may suppose
that for each i, h; = gflaigm for some fixed natural numbers [ and m, and a; € A
for each i. Now, by assumption, there exists a subsequence (a;;)72; < (a;)72; and
a non-trivial = € con((a;;)jZ;). It is then easy to compute that & = glrgm is
in the contraction group of the subsequence (h;;)72; and non-trivial. Thus the

decomposition G = | |, 4 LI, ; K'(g; Yag;) K’ has the contraction group property.

Conversely, retaining the notation from above, suppose that K” is a compact open
subgroup of G containing K. Then there exists a subset A” < A such that G =
|l,ear K"aK". Since every sequence in A is either bounded or has a subsequence
with non-trivial contraction group, the same property holds for the set A”. Thus

the decomposition G = | |,. 4» K"aK" has the contraction group property.

We have shown that if a compact open subgroup of G contains K or is contained
in K, then G admits a Cartan-like decomposition with respect to this compact
open subgroup satisfying the contraction group property. Now suppose that L is
an arbitrary compact open subgroup not necessarily contained in or containing
K. Then L n K is a compact open subgroup contained in K, hence G admits a
Cartan-like decomposition satisfying the contraction group property with respect
to L n K. Then it follows that G also admits a Cartan-like decomposition with
respect to L satisfying the contraction group property since L contains L n K and

the contraction group property holds for the decomposition with respect to L. [

Ideally, the contraction group property would also not depend on the choice of coset
representatives in the Cartan-like decomposition, however, unfortunately, this is not

always the case as shown in the following example:

Example 4.5. Take the group G = PGL(Q,) and the compact open subgroup
K =PGL(Z,). G admits a Cartan-like decomposition:

G=||KgK

neN
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where g = (£ 9). It can be checked that the matrix (§ 1) is a non-trivial element in

0

the contraction group of the sequence (g™)%_;.

: 10
Then since y, = (s ;) (where we

assume we take the ceiling of n/3 when it is non-integral) is in the compact open

0

subgroup K for each n € N, the elements g, = g"y, = (;:;3 X

) also form a set of
coset representatives for a Cartan-like decomposition for PGL(Q,,). We claim that

the contraction group of every subsequence of the sequence (g, ), is trivial.

Suppose that h = (¢ %) € PGL(Q,) and is in the contraction group of the sequence
(gn)y>_;. Then, it may be checked that:
a— bp" bp™

gn = gnhgrjl =
(a—d)yp=2"3 fep= —bp~"/3 bp™3 +d

Since it is assumed that g, — (), we must have a = d = 1. Then,

~ 1—bp” bp™

= ep —bp~™3 1+ bp™/3
It then follows that we must have b = ¢ = 0 for g, to converge to the identity,
otherwise, the norm of the bottom left entry of the matrix will diverge to oo, and
hence the bottom left entry must diverge. Thus h is the identity and so con((gn)o;)
is trivial. It is clear that every subsequence of the sequence (g,,)%_; must also have
trivial contraction group. This demonstrates that if one Cartan-like decomposition

of a group has the contraction group property, then another decomposition may

not, even if we keep the same compact subgroup K.

Although, in general, the choice of coset representatives in a Cartan-like decomposi-
tion can effect whether the decomposition will have the contraction group property

or not, for some classes of groups this is not the case:

Proposition 4.6. Let T, be a label reqular tree. The contraction group property

for Aut(T,) does not depend on the choice of coset representatives.

PROOF. Assume the contraction group property for coset representatives holds
for some decomposition Aut(7a) = || c4 Kgo K, where K = Aut(7a), is some

compact open subgroup with v € V7,, and A = {g, | @ € A} is a set of coset
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representatives for the decomposition and A an indexing set. We may assume that
A is in one-to-one correspondence with the set of finite sequence of labels compatible

with T, as discussed in [CW20].

Suppose there exists another set of coset representatives {hg | 8 € B} such that
Aut(Ta) = |gep KhpK, where B is some indexing set and each of the hg are au-
tomorphisms in Aut(7,). We need to show that this new decomposition satisfies
the contraction group property. Let {hg,}°; be a subsequence of the coset rep-
resentatives. Since each of the hg, are in Aut(7a) and Aut(7a) = | |,cq K9,
for each i we may write hg, = k;ga,k} for some k;, k; € K and go, € A. If the
sequence (gq,); is bounded then the sequence (hg,), is also since each of the
k; and k! are contained in the compact open subgroup K. So we assume that the

sequence (gq, )72, is unbounded and show that there is a non-trivial element in the

contraction group of some subsequence of the hg,.

The remainder of the proof follows a similar argument to the proof of [CW20], The-
orem 4.1]. Since the sequence (gq, ) ; is unbounded, by passing to a subsequence if
necessary, we may suppose d(v, go, (v)) = 4 for each i, and since T, is locally finite,
by passing to a subsequence if necessary, we may suppose that the first vertex on
the path from v to gq, (v) is always w € VT,. Then since k; and &} fix v for each i,
we have that d(v, hg,) > i for each i. Also, since 7, is locally finite, we may suppose
by passing to subsequences if necessary, that each of the k; and &} have the same
action on B(v,1) in 7T,. Then it follows from this that the first vertex on the path

from v to hg, (v) always passes through a fixed vertex say w’ € V7,.

Now, if infinitely many of the hg, are translations with v on the axis, then by
passing to subsequence is necessary, we may suppose that they all are. Choosing
an x € Aut(7,) that fixes 7, ., and acts non-trivially on 7, . gives a non-trivial
element in the contraction group of the sequence (hg,)72;. If only finitely many
of the hg, are translations with v on the axis, again, by passing to a subsequence,
we may suppose that each of the hg, are either elliptic elements, inversions or
translations with v not on the axis. Choosing = € Aut(7,) that acts non-trivially
on Ty and fixes () gives a non-trivial element in the contraction group of

the sequence (hg,)2 ;. O
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4.3. The Closed Range Property

This section will study some more general results concerning the closed range prop-
erty in topological groups. First we prove a generalisation of Theorem 4.1 from
[CW20] that will later be applied to groups acting on trees to develop some new
closed range properties for certain groups. We also prove a result regarding when

the closed range property is passed to supergroups.

THEOREM 4.7. Let G be a topologically simple topological group that has the con-
traction group property. Then G has the closed range property.

PROOF. Suppose the hypotheses of the theorem. Let K < G be a compact
open subgroup and A € G such that G admits a Cartan-like decomposition G =
|l,e4 KaK with the contraction group property, and suppose that ¢ : G — H is
a non-trivial continuous homomorphism to some topological group H. Consider
a sequence (g;)72; < G and suppose that ¢(g;) converges to h € H. It must
be shown that h € ¢(G). Now, there are sequences (k;)2,, (ki)?2, < K and
(a:)2, < A such that g; = k;a,;k} for each i. Passing to a subsequence if necessary,
we may suppose, by compactness of K, that the sequences (k;)$2, and (k})2,
converge to elements k, k' € K respectively. Then ¢(a;) = ¢(k;) " Lp(gi)p(kl) ™ —
(k)" thp(k')~! as i — 0. Thus the sequence (¢(a;))?; converges.

If the sequence (a;){2; is bounded, it may be supposed, by passing to a subsequence
if necessary, that the sequence is constant. Then a; = a € A for each i and
h = pk)p(a)p(k’) € ©(G). Thus the proof is complete. So suppose that the
sequence (a;)2; is unbounded and set & := lim; . ¢(a;). By assumption, there
exists a subsequence (a;;);2; S (a;)j2; and a non-trivial z € con((a;;);2;). Then
ap(r)a=! = lim; o @(ajza; ) = lim; o0 @(aijxa;jl) = idy by definition of the
contraction subgroup for the sequence (a;;)72; and continuity of . Hence the
kernel of ¢ contains con((a;;);2;) and so ¢ must be the trivial homomorphism

because G is topologically simple, a contradiction. This completes the proof. [

‘We now move onto showing that, under certain assumption, the closed range prop-

erty is passed to supergroups, in particular, we show that if a locally compact group
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G has a cocompact subgroup with the closed range property, then G also has the

closed range property. We need the following two lemmas for the proof:

Lemma 4.8. Let G be a topological group and A, B < G with A compact and B
closed. Then the set AB is closed.

PROOF. Let (¢;)ier be a net in C = AB with I some indexing set. Suppose
that ¢; — ¢ for some ¢ € G. We will show that ¢ € C'. For each ¢ € I, choose
a; € A and b; € B such that ¢; = a;b;. By compactness of A, there exists a subnet
(aj)jes S (ai)ier (J < I), and an a € A such that a; — a. Then it follows by

1
j Cj—>b

continuity of the group operations in G, and closedness of B, that b; = a
for some b € B. Thus ¢; — ab and hence ¢; — ab. Since ab € AB, it follows that

AB is closed. O

Recall that given a topological group G and a subgroup H < G, H is said to be
cocompact in G if its quotient G/H is compact in the quotient topology. We prove

the following fact about locally compact groups:

Lemma 4.9. Let G be a locally compact group and suppose that H is a cocompact

subgroup of G. Then there exists a compact set K < G such that G = KH.

PrOOF. Let U be the collection of open sets in G with compact closure and
let 7 : G — G/H the canonical map. Then, since 7 is an open map, {w(U)|U €
U} forms an open covering of G/H. By compactness of G/H, there is a finite
subcover say m(U1),...,n(U,) of G/H. Then it follows that K = [J_, U,, is a
compact subset of G, being a finite union of compact sets, and 7(K) = KH = G

by construction. O

Proposition 4.10. Let G be a locally compact group. Suppose that H is a cocom-
pact subgroup of G with the closed range property. Then G also has the closed range
property.

PrOOF. Let G be a locally compact group and suppose that H is a cocompact
subgroup of G with the closed range property. Let K be a compact subset of G
such that G = KH, which exists by the previous lemma. Let ¢ : G — G be a

continuous homomorphism to an arbitrary topological group G. By assumption,
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we know that ¢(H) is closed in G, since H satisfies the closed range property and
the restriction of ¢ to H is continuous. Since ¢ is continuous, ¢(K) is compact in
G, and then by Lemma ©(G) = o(K)p(H) is closed being the product of a

compact set and a closed set. O






CHAPTER 5

The Contraction Group and Closed Range

Properties in Tree Automorphism Groups

In this chapter we study the contraction group and closed range properties in some
of the automorphism groups of trees seen in Chapter In the first section, we
provide an example of how the contraction group property can fail for a Cartan-
like decomposition of the Le Boudec groups G(F, F’). We then proceed to develop
some closed range results for the simple subgroups G** encountered in Chapter as
well. This leads to some closed range results for the (generalised) universal groups
and more generally groups acting on trees with a locally semiprimitive action. The
section ends with some comments on almost automorphism groups and the relation

between commensurated subgroups and the closed range property.

5.1. Le Boudec’s Groups

We will now briefly discuss the contraction group and closed range properties in
the context of Le Boudec’s groups. It can be easily deduced from Proposition |3.10
that the groups G(F, F’) do not in general satisfy the closed range property: when
G(F,F’) # U(F"), the inclusion map G(F,F’) — Aut(7;) is continuous but not
closed. In the following we give an explicit example of a Cartan-like decomposition
of one of Le Boudec’s groups that does not satisfy the contraction group property.
We show that there exists a Cartan-like decomposition of G({(123))) that does
not satisfy the contraction group property. To do this, it is suffice to find such a
decomposition for the subgroup G({(123))), for some fixed v € V7. Indeed, we can
extend a set of coset representatives for a Cartan-like decomposition of G({(123)}),
to a set of coset representatives for a Cartan-like decomposition of G({(123))), and if
the contraction group property is not satisfied for the decomposition of G({(123)}),,
then it will not be satisfied for the decomposition of G({(123))) either.

49
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Recall from the section on Le Boudec’s groups in Chapter [2 that the topology on
G({(123))) is the unique group topology such that the inclusion map U({(123))) —
G({(123))) is continuous and open. In particular, the compact open subgroups of
G({(123))) are precisely the compact open subgroups in U ({(123)})), and their trans-
lations and finite unions in G({(123))). Hence, for our Cartan-like decomposition

of G({(123))),, we will take the compact open subgroup to be K = U({(123)})),.

First, we state the following lemma which demonstrates a method for choosing coset

representatives in a Cartan-like decomposition for the Le Boudec groups:

Lemma 5.1. Let F < F' < Sym(d) be two permutation groups and K = U(F),
for some vertex v € VTg. Set A, = {g € G(F,F'),\U(F), | S(g) € B(v,n)}
and A = Ufozl A;. Define an equivalence relation on A by a1 ~ ao if and only if
there exists k, k' € K such that a; = kask’ and let A be a set of representatives
of equivalences classes in A/~. Then each of the double-cosets KaK are pairwise

disjoint for each a € A and

G(F.F), = | | KaK
acA
PROOF. Let g € G(F, F'), and suppose that S(g) = B(v,n). Then there exists
a € A, such that a=lg € U(F),; for instance, take a = g if g € G(F, F"),\U(F),
or a =id if g € U(F),. Then it follows that g = ak for some k € K so G(F,F’) =

Ues ¢ = J,en KaK. Now, there exists a unique element a € A such that a =
kak' for some k, k" € K. It follows that g € KaK and hence G(F, F') = |J,.; KaK.

To show that the cosets are disjoint, suppose that KaK n Ka'K # ¢ for some
distinct a,a’ € A. Then we must have that kiaki = kqoa’kl for some k; ki € K
(i = 1,2). Tt follows that a = ka'k’ for some k,k’ € K i.e. a ~ a’. Hence we must
have that KaK = Ka'K. Thus the cosets are either equal or disjoint and hence

G(F, F)y = |, i KaK. O

Thus choosing coset representatives for a Cartan-like decomposition of the groups
G(F,F’), is a matter of choosing one automorphism from each of the equivalence
classes in A/~. In particular, to find a sequence of coset representatives that do not

satisfy the contraction group property, it is suffice to find a sequence in G({(123))),
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that has trivial contraction group, such that each of the elements are not equivalent
under the equivalence relation ~ described in the lemma. Then we may extend this
sequence to a sequence of coset representatives for a Cartan-like decomposition of

G({(123))), that does not satisfy the contraction group property.

Thus, for each n € N, define a,, € G({(123))), to ‘switch’ the two left most vertices
on each of the levels 2,...,n of the 3-regular (pictured as the rooted tree 73 3) as

illustrated below:

Level n — 1

Level n

The automorphism a,,

Since U({(123))), consists of only those automorphisms that cyclically permute the
vertices on level 1 of the above tree (and have the same local action at each vertex),
it is easy to see that a, is not equivalent to a,, for any m # n. We just need
to show that every subsequence of (a,)%_; has trivial contraction group. This is
indeed the case since G({(123))) is a discrete group, however, we will also give the
following argument which provides more intuition as to why the contraction group

is trivial.

If z € con((an,)2,) for some subsequence (an,; )2, S (an)ic_q, then x has to fix the

1

root v otherwise a,xa, ' would shift v to a vertex distance d(v,z(v)) away from

v for all n, hence {a,, xa;il 2, could not converge to the identity. Also, x clearly
has to act trivially on the two right most branches of the above tree. If x acts

non-trivially on the left most branch of the tree, then there is some level, say level
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m, on which z switches (atleast) two vertices, and it is easy to see that a,,za,!
acts non-trivially on level m for each i. Thus z must be trivial and hence every

subsequence of (a,)%_; has trivial contraction group.

5.2. Closed Groups Acting on Trees

We now extend the work on Cartan-like decompositions and the closed range prop-
erty seen in [CW20] to a larger class of groups acting on trees. We show in the
following, that under standard assumptions, for any closed subgroup G < Aut(7T),
G™* has the closed range property. This will have consequences for universal groups,
k-closures of groups acting on trees and non-discrete locally semi-primitive groups.
Throughout this section we assume that 7 is an arbitrary infinite locally finite tree
without leaves. First we note that closed subgroups of the automorphism group of
a locally finite tree T admit a Cartan-like decomposition with a vertex stabiliser as

the compact open subgroup:

Proposition 5.2. Let G < Aut(T) be a closed subgroup. For any v € VT, the
vertex stabiliser K = G, < G is a compact open subgroup of G, and G admits
a Cartan-like decomposition G = | |,., KaK for some A < G. Moreover, A can

be chosen so that there is exactly one element of A for each orbit of G acting on

Gv n S(v,n) for each n € N.

PRrROOF. Fix v € VT. It is clear that K = GG, is a compact open subgroup in
the subspace topology on G, being the intersection of the compact open subgroup
Aut(T), with G. Now, let Gv denote the orbit of v under the action of G. To show
that G admits a Cartan-like decomposition, enumerate the orbits of K acting on
the spheres S(v,n) n Gv = T for each n € N. For each orbit, choose a vertex w in
that orbit and an automorphism a,, € G that sends v to w. Let A be the collection
of all the chosen a,,. We claim that G = | |,.4 KaK. Indeed, let g € G. There
exists a vertex w € VT in the K-orbit of g(v) and an automorphism a,, € A that
sends v to w. Let k € K such that kg(v) = w. Then ay'kg(v) = v, so atkg € K,
and it follows that g € Ka, K. If there exists @y, ,w, € A, Ay, # Gu,, such that
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Ka,, K = Kay, K then this would contradict that w; and ws are in different K-
orbits. Thus the double cosets KaK, for a € A, are disjoint for distinct a and hence

it follows that G = | | .4 KaK. O

In particular, for any F < Sym(d), U(F) admits a Cartan-like decomposition
U(F) = |,cs KaK where K = U(F), for a fixed v € V73 and the coset rep-
resentatives are constructed as above. Recall from [BMOQ] that a group is called
oo-transitive if the stabiliser of a vertex v acts transitively on S(v, n) for every n. If
U(F) is co-transitive, then U(F) admits a Cartan-like decomposition whose coset

representatives are powers of a single translation:

Corollary 5.3. Let F < Sym(d) and assume that U(F') is oco-transitive. Let « €
U(F) be a translation and v € VT be a vertex on the axis of «. Then U(F) =
ez K"K where K = U(F),.

PROOF. Let g € U(F). If g fixes v, then clearly g € | |,,., Ka™K. So we may
suppose that g(v) # v. Since F is oo-transitive, there exists a k; € K such that
k1g(v) is on the axis of . Then there exists an integer m such that a™k;g(v) = v.

Let ko € K such that a™ki1g = ko. It follows that g = kl_lofmkg el Ko"K.

nez

The cosets are clearly disjoint. O

For use in the forthcoming theorem, we need the following two lemma’s. The first
lemma is just Lemma 4 in [M[V12] restated for use here. We direct the reader to

IMV12] for the proof.

Lemma 5.4. Suppose that G < Aut(T) does not stabilise any non-empty subtree
of T. Then the following hold:

(i) Suppose that there is some edge {u,v} € ET such that the pointwise stabiliser
of both the half-trees T(y ) and T(, ) are non-trivial. Then the pointwise
stabiliser of every half-tree in T is non-trivial.

(ii) Suppose that there is some edge {u,v} € ET such that the pointwise stabiliser
of T(u,v 18 trivial while the pointwise stabiliser of T, ) is non-trivial. Then

G must fixz an end of T .
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Now, we prove the following lemma which is a consequence of the previous lemma

and Lemma [3.24}

Lemma 5.5. Suppose that G < Aut(T) and assume that G does not stabilise any
proper non-empty subtree or fiz an end of T, and satisfies Property Py. If G+ is

non-trivial, then the fizator in G+ of every half tree in T is non-trivial.

PROOF. Since G** is normal in G, by Lemmal[3.24] G** does not stabilise any
proper non-empty subtree or end of 7. Since GT* is non-trivial, there exists an
edge e = {v,w} € ET and a non-trivial element g € F, . = Fixg(B(v, k) n B(w, k)).
Now we know that Fy . = Fixp, , (T(vw))Fixr, . (T(w,)) since G satisfies Property
P,. Thus, since Fj, . is non-trivial, there must exist a non-trivial element ¢’ in either
Fixp,  (Taw,w)) or Fixp,  (Tww)). Clearly g" € G™+. Since G** does not stabilise
any non-empty subtree or fix an end of T, an application of Lemma i1) followed
by an application of Lemma (z) then shows that the stabiliser in G+ of every

half tree in 7 must be non-trivial. O

We now come to the following theorem which shows that for closed subgroups G <

Aut(T), the groups G** have the closed range property under certain assumptions:

THEOREM 5.6. Let G < Aut(T) be a closed subgroup and suppose that G does not
stabilise any proper non-empty subtree or fix an end of T. If G satisfies Property
Py, then G+ has the closed range property.

Proor. First we note that G™* is open in G since it contains for instance the
open neighbourhood U(id, B(v, k) n B(w, k)) of the identity, where {v,w} € ET.
Since G™* is open in G, it is also closed in G, and since G is closed in Aut(7), it
follows that G** is closed in Aut(7). By Proposition G** admits a Cartan-like
decomposition G = | |, 4, KaK, with K = G}* and A € G** as constructed in the
proposition. We also know that GT* is either trivial or simple by Theorem
If G+ is trivial then GT* clearly also satisfies the contraction group property, so
we may suppose that G1* is non-trivial and simple. By Theorem [4.7, we just need

to show that the Cartan-like decomposition G*+ = | | _, KaK has the contraction

group property.
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Let (a;)2; € A be arbitrary; we need to show that (a;)$2, is either bounded or has
a subsequence with non-trivial contraction group. If the sequence is bounded, then
we are done, so assume that the sequence is unbounded. Then we may assume, by
passing to a subsequence if necessary, that for each ¢ > 1 the distance from v to
a;(v) is at least ¢ and, since 7 is locally finite, that the first step of the path from

v to a;(v) always passes through the same vertex, w € VT say.

If infinitely many of the a; are translations with v on the axis, by passing to a
subsequence, we may suppose that they all are. Then choose z € GT* to fix
T(w,») and act non-trivially on 7(, ), which exists by the previous lemma. It is
easy to check that ama;l fixes the ball of radius ¢ around v for each ¢ and hence

1

a;xa; - — id. So x is a non-trivial element in the contraction group of a subsequence

of the a; and we are done.

Similarly, if only finitely many of the a; are translations with v on their axis, then
it may be assumed that no a; is a translation with v on its axis. Then each of the
a; are either elliptic elements or translations with v not on the axis. Also, for each
i, w is closer than v to the fixed points of a;, if a; is elliptic, or the axis of a;, if it
is a translation. Choose x € G** that fixes T(v,w) and acts non-trivially on T, .-
It is easily checked that a;za; ' fixes the ball of radius i around v for each i and
hence converges to the identity. Then z is a non-trivial element of the contraction

group of a subsequence of the a;. This completes the proof. ([

We now state a number of corollaries that result from this theorem:

Corollary 5.7. Let G < Aut(T) and suppose that G does not fix any proper non-
empty subtree or fix an end of T. Then (G¥))** has the closed range property.

PRrOOF. Since G*) contains G, G*) does not fix any non-empty subtree or end

of T. Also, G¥) is closed by Proposition Now apply the previous theorem. [

Since the generalised universal groups Uy (F') satisfy Property Py and do not sta-
bilise any proper non-empty subtree or fix an end of 7T, this also gives us the

following:
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Corollary 5.8. Let F' < Aut(Bgy). Then Ug(F)™* satisfies the closed range

property.

The theorem also allows us to show that the universal groups U(F) satisfy the

closed range property under mild assumptions:

Corollary 5.9. Let F < Sym(d). Then U(F)* has the closed range property.
Moreover, if F is transitive and generated by point stabilisers, then U(F') has the

closed range property.

PRrROOF. That U(F)" has the closed range property is just a special case of the
previous corollary. When F' is transitive and generated by point stabilisers, U (F)"
has index 2 in U(F') by Theorem and then an application of Proposition m
shows that U(F) has the closed range property. O

For use in the following corollary, a group G < Aut(7) is locally semi-primitive
if for every v € VT, the vertex stabiliser G, acts as a semi-primitive permutation
group on the edges incident to v in 7. A permutation group is semi-primitive if it

is transitive and all its normal subgroups are either transitive or free.

Corollary 5.10. Let G < Aut(T) be closed, non-discrete and locally semi-primitive.
If G does not fix any proper non-empty subtree or end of T, and satisfies Property
Py, then G has the closed range property.

PROOF. By the theorem, G** has the closed range property, and by [Tor20,
Proposition 2.11(iii)], G** is cocompact in G since it is a normal subgroup of G. An

application of Proposition [£.10]shows that G also has the closed range property. O

5.3. Commensurated Subgroups and the Closed Range Property

Let G be an arbitrary group. We say that two subgroups H, K < G are commen-
surated if [H : H n K] < o and [K : K n H| < co. Similarly, the subgroup H is
said to be commensurated in G if [H : gHg™' n H] < oo for all g € G.

Commensurated subgroups are connected with the closed range property we are

studying here. For example, the following result by Le Boudec—Wesolek in [LBW19)]
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gives a link between commensurated subgroups and homomorphisms to totally dis-

connected locally compact groups having closed range:

Proposition 5.11. Let G be a t.d.l.c. group such that every proper commensurated
open subgroup of G is compact. Then every continuous homomorphism ¢ : G — H

with H a t.d.l.c. group has closed range.

In the paper [LBW19], Le Boudec and Wesolek also show that in almost automor-
phism groups of rooted trees, there are precisely three classes of closed commensu-

rated subgroups:

THEOREM 5.12. [LBW19, Theorem 1.6] If A < AAut(Tgx) is commensurated,
then either A is finite, A is compact and open, or A = AAut(Tq).

As a result of this theorem and Proposition 5.3} the following closed range property
for the almost automorphism groups is deduced:

Corollary 5.13. [LBW19| Corollary 7.1] Every continuous homomorphism ¢ :
AAut(Tg) — G with G a t.d.l.c. group has closed range.

Proposition can also be used to prove the following result for discrete simple groups:

Proposition 5.14. If G is a discrete simple group such that every proper com-
mensurated subgroup is finite, and ¢ : G — H is a continuous homomorphism to a

totally disconnected locally compact groups H, then ¢ has closed range.






CHAPTER 6

Buildings and their Automorphism Groups

In this chapter we will give a brief introduction to the combinatorial approach to
buildings and discuss some results concerning automorphism groups of right-angled
buildings. We will also talk about some recent developments on universal groups of
right-angled buildings, a generalisation of universal groups of regular trees. We start
off by introducing some of the basic concepts involving the combinatorial approach
to buildings and will more or less follow [ABO8| Chapter 5]. It is assumed that the
reader will already have some familiarity with Coxeter groups and the ‘simplicial’

approach to buildings.

Let S be a set and M = (m(s,t))s,es be a square matrix indexed by the elements

of S satisfying the following properties:

A matrix M satisfying the above properties is called a Cozeter matriz. We then

define a group Wy, given by the following presentation:

War := (S | (st)™=0) = 1)

m(s:t) — 1 when m(s,t) = 0 to mean that there is

and we interpret the relation (st)
no relation between the elements s and t. We often call Wy, a Coxeter group with
generating set S and refer to the pair (Wyy, S) as a Cozeter system. Often we will
drop the subscript M and merely denote a Coxeter system by (W, S) and interpret
this to mean that W is a group with generating set .S and presentation of the form
above. The Coxeter system (W, S) is called spherical if W if finite.
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For the remainder of this section, fix a Coxeter system (W,S) and let £ be the
function that assigns to each word in W its length with respect to the generating
set S. A building A of type (W, S) is a pair (Ch(A), §), where Ch(A) is a non-empty
set whose elements are called the chambers of A, and ¢ : Ch(A) x Ch(A) - W a

map called the Weyl distance function which satisfies the following properties:

(i) 0(C,D) =1if and only if C = D.

(ii) If 6(C,D) = w and C’ € Ch(A) satisfies §(C',C) = s € S, then either
§(C",D) = w or 6(C',D) = sw. If, in addition, ¢(sw) = f(w) + 1, then
§(C", D) = sw.

(iii) If §(C, D) = w, then for any s € S there is a chamber C’ € Ch(A) such that
5(C',C) = s and §(C’", D) = sw.

We remark that it can be shown that the function § satisfies 6(C, D) = 6(D,C)~*
for any C, D € Ch(A). Further, § satisfies the gate property, that is, §(C,E) =
d(C,D)é(D, E) for all C,D,E € Ch(A). These facts require proof which we will
not give here, however they can be found in [ABO8| Chapter 5] for instance. One
will note that the properties of § vaguely resemble the properties of a metric: the

above definition of a building is also often referred to as a W-Metric Space.

Now, let J = S. Two chambers C, D € Ch(A) are said to be J-equivalent, which
we denote by C' ~; D, if §(C,D) € Wy where W; = (J) < W. It is straight
forward to check that this is an equivalence relation on the set of chambers of A.
The equivalence classes under this equivalence relation are called J-residues, and
the J-residue containing the chamber C' € Ch(A) will be denoted by R;(C). An
arbitrary subset R € Ch(A) is called a residue if it is a J-residue for some J < S.
The set J is called the type of the residue and |J| is called the rank (n.b. the rank
of the building A is |S].

If J = {s} for some s € S, we say that two chambers C' and D are s-equivalent and
write C ~5 D. Moreover, if 6(C, D) = s then we say that C and D are s-adjacent,
and two chambers are said to be adjacent if they are s-adjacent for some s € S. The
equivalence classes in Ch(A) under the equivalence relation ~ (s € S) are called
s-panels. The term panel is used to refer to an s-panel for some s € S. The unique

s-panel containing a chamber C' € Ch(A) will be denoted by P(C). A building
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such that every panel has cardinality two is called thin, and a building where every
panel has cardinality strictly greater than two is called thick. A thin subbuilding
of the building A is called an apartment of A.

A gallery of length n is a sequence of chambers I' : Cy, ..., C, such that C;_; is
adjacent to C; for each 4. If there is no gallery of shorter length between Cj and
C, then we define the distance d(C, D) between C' and D to be n. One can show
that d(C, D) = £(6(C, D)). The gallery T is called minimal if d(Cy, C,,) = n. The
type of the gallery I' is s(I') := (s1,82,...,8,) where s; = 6(C;_1,C;) for each i.
It can also be checked that two chambers C, D € Ch(A) are in the same J-residue
if and only if there is a gallery of type (si,...,s,) connecting C' to D such that

s; € J for each i.

Given a residue R and a chamber D € Ch(A), define d(R, D) := min{d(C, D) |
C € Ch(R)}. It can be shown that there is a unique chamber C; € Ch(R) such
that d(Cy, D) = d(R, D) (c.f. [ABOS8| Proposition 5.34]). The chamber C; is then
called the projection of D onto R and is denoted by projg (D). For two residues
R1 and Rq, we define projz (R2) := {projz, (C) | C'€ Ch(R2)}.

6.1. Right-Angled Buildings

A Coxeter system (W, S) is called right-angled if its Coxeter matrix M = (m(s,t))s,tes
satisfies the property that m(s,t) = 2 or 0 whenever s # t. A building A of type
(W, S) is called right-angled if the Coxeter system (W, S) is a right-angled Coxeter
system. An important result about right-angled buildings is the following result by
Haglund-Paulin in [HPO03]:

THEOREM 6.1. [HPO03| Proposition 1.2] Let (W, S) be a right-angled Cozeter system
and (gs)ses be a collection of cardinal numbers indexed by the elements of S such
that gs = 2 for each s. Then there exists a right-angled building of type (W, S)
such that every s-panel has cardinality qs. Moreover, this building is unique up to

isomorphism.

Such a building as described in the theorem where each s-panel has prescribed

thickness ¢ is called a semi-reqular right-angled building. Next, we say that a group
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G acts on a building A strongly transitively if G is transitive on pairs (C,A) in A
where C'is a chamber and A is an apartment containing C'. The following simplicity
result was proved by Caprace in [Cap14] and will later be used to establish a closed

range property for these groups:

THEOREM 6.2. [Capl4], Theorem 1.1] Let A be a thick semi-regular right-angled
building of type (W, S). Assume that (W, S) is irreducible and non-spherical. Then
the group Aut(A)* of type preserving automorphisms of A is abstractly simple and

acts strongly transitively on A.

If A is a semi-regular right-angled building with prescribed thicknesses (gs)ses such
that g; < oo for each s € S, then the automorphism group Aut(A) is a compactly
generated totally disconnected locally compact group with the permutation topol-
ogy, and by the above theorem, the subgroup of type preserving automorphisms is
a simple compactly generated totally disconnected locally compact group if (W, S)

is non-spherical and irreducible.

Before moving on to understanding universal groups of right-angled buildings, we
first need to define some more terminology useful for the study of right-angled
buildings. First, given two panels R and R, we say that R, and Ry are parallel
if projr,(R2) = Ri1 and projg,(R1) = Ra. It can be shown that parallelism
is an equivalence relation on the set of all residues. This is a corollary of the
following statement from [Capl4]. For use in the following, for J < S, define
Jt ={te S\J|ts =stforall s e J}. When J = {s}, we use the notational

convention that J+ = st.

Proposition 6.3. [Capl4] Proposition 2.8] Let A be a right-angled building of
type (W, S). The following properties hold:

(i) Any two parallel residues have the same type.
(i) Let J = S. Given a residue R of type J, a residue R’ is parallel to R if and
only if R' is of type J and R and R’ are both contained in a common residue

of type J U J*+.

An s-tree-wall is then defined as an equivalence class of parallel s-panels in A. For

an s-tree-wall T we will let Ch(7") denote the set of all chambers of A contained
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in some panel of the equivalence class 7. As a result of the above proposition, the

following is also true:

Proposition 6.4. [DMSS18, Corollary 2.25] Let A be a right-angled building of
type (W, S) and let s € S. Two s-panels Py and Ps belong to the same s-tree-wall

if and only if they are both contained in a common residue of type s U s*.

6.2. Universal Groups for Right-Angled Buildings

In an analogous way to universal groups of regular trees, semi-regular right-angled
buildings can be assigned a legal labelling and a notion of universal group can
be defined. In this section we give a brief overview of the work from the paper
[DMSS18| where universal groups of right-angled buildings were first defined. For
the remainder of this section, we fix a semi-regular right-angled building A of type

(W, S) and prescribed thicknesses (gs)ses-

First we define what a labelling of a semi-regular right-angled building is:

Definition 6.5 (s-Labelling). For each s € S, let {5 be a set of cardinality gs,
which is called the set of s-labels. A map Ag : Ch(A) — Q, is called an s-labelling
of A if for every s-panel P, there is a bijection between the chambers of P and the

elements of Q.

From here, one can then define a notion of ‘legal-labelling’ for semi-regular right-

angled buildings:

Definition 6.6 (Legal s-Labelling). An s-labelling A; : Ch(A) — € is called a
legal s-labelling if for every S\{s}-residue R, A;(C) = A\s(D) for all C, D € Ch(R).

We remark that, given a legal s-labelling A, every ¢-panel P for ¢t € S\{s} can be
assigned a well defined label denoted A4 (P) since every chamber of P is assigned the
same A label. Another weaker notion of a legal-labelling is the following, which will

be important in defining universal groups of semi-regular right-angled buildings:

Definition 6.7 (Weak Legal s-Labelling). An s-labelling \; is called a weak legal
s-labelling if whenever P; and Ps are two s-panels in a common s-tree-wall, then

for all C'e Ch(Py), we have A\(C) = Xs(projp, (C)).
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Every legal s-labelling is indeed a weak legal s-labelling. It is also the case that
every weak legal s-labelling is a legal s-labelling when restricted to Ch(7) for an
s-tree-wall 7. Now, given two s-labelings A, and A, and a group G < Sym(£5), we
will say that the labelings Ay and X, are G-equivalent if for every s-panel P, there
is g € G such that A¢|p =go 5\3|p.

The following gives a relation between legal labelings and weak legal labelings:

Proposition 6.8. [DMSS18| Proposition 2.48] Let s € S and G < Sym(€;) be a
transitive permutation group. Then every weak legal s-labelling is G-equivalent to

a legal s-labelling.

We now come to the definition of a universal group of a semi-regular right-angled

building;:

Definition 6.9. Let A be a semi-regular right-angled building with prescribed
thicknesses (gs)ses- For each s € S, let As : Ch(A) — Qg be a weak legal s-labelling,
where () is a set of cardinality ¢, and G5 < Sym(€)s) a transitive permutation
group. Define the universal group U((Gs)ses) of A with respect to the groups
(Gs)ses as:

U((GS)SES) = {g € Aut(A) | (/\6

P.90)) ©9° As|p, ()"t € Gy, forall se S,

all s-panels P;, and for all C € P}

The above definition of universal group does not depend on whether we start with

a weak legal labelling or a non-weak legal labelling:

Proposition 6.10. [DMSS18| Lemma 3.2] For each s € S, let (As)ses and (As)ses
be two Gg-equivalent labelings. Then the universal groups constructed using the

labelings (As)ses and (As)ses coincide.

Further, it is true that the definition of universal group does not depend on the
choice of legal labelling; for different legal labelings the groups are conjugate to

each other.

The local action of a group H < Aut(A) at a panel P is defined to be the action
of the set-wise stabiliser Hp on P. The universal groups U((Gs)ses) have the
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following property, analogous to the corresponding property for universal groups of

regular trees:

Proposition 6.11. [DMSS18| Lemma 3.5] The local action of the universal group

on an s-panel is isomorphic to G4 for each s € S.

The universal groups U(G5)ses also have the following universality property similar
to universal groups of regular trees: given any closed chamber-transitive subgroup
H < Aut(A) such that the local action on each s-panel is isomorphic to G for each

s € S, then H is conjugate in Aut(A) to a subgroup of U((Gs)ses-

Universal groups of semi-regular right-angled buildings further share many similar
properties to the universal groups of regular trees. The following proposition is

extracted from Proposition 3.7 in [DIMSS18]:

Proposition 6.12. Let A be a semi-regular right-angled building with prescribed
thicknesses (qs)ses. For each s € S, let G5 < Sym(Q;) be a finite transitive permu-

tation group. Then the universal group U((Gs)ses) satisfies the following properties:

(i) U((Gs)ses) is a closed subgroup of Aut(A).
(i) U((Gs)ses) is chamber transitive.
(ii3) If A is locally finite, then U((Gs)ses) is compactly generated.

PROOF. (i): The proof is much the same as the proof for universal groups of reg-
ular trees: we will show that Aut(AN\U((Gs)ses) is open. Let g € Aut(AN\U((Gs)ses)-
Then there exists an s-panel Py for some s € S and a chamber C' € Ch(P;) such
that (Xs|p, () © g0 (A
with g on the panel Ps(C) is open in the permutation topology on Aut(A) and is
contained in Aut(A)\U((Gs)ses). Thus it folllows that Aut(AN\U((Gs)ses) is open
and hence U((Gy)ses) is closed in Aut(A).

p.(c)) " ¢ Gs. The set of all automorphisms that agree

(ii): First suppose that C' and D are two adjacent chambers in the building A. Then
C and D are contained in a unique s-panel P. The set-wise stabiliser U((G5)ses)p
of the panel P is isomorphic to the group Gs. Since the group G, is chamber
transitive, it follows that there is an automorphism in U((Gs)ses)p sending C to

D. This shows that for any two adjacent chambers in A, there is an automorphism
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taking C' to D. Then given any two arbitrary chambers C' and D in A, find a
minimal gallery I' : C' = Cy,C4,...,C,, = D from C to D in A. By the previous
arguments, for each 4 there exists an automorphism g¢; € U((G5s)ses) sending C; to
C;+1 the composition of these automorphisms then sends C' to D. This shows that

U((Gs)ses) is chamber transitive.

(iii): Fix a chamber C € Ch(A) and Cy,...,C, € Ch(A) be the chambers adjacent
to C. For each i € {1,...,n} choose g; € U((Gs)ses such that g;(C;) = C. We
claim that the compact set U((Gs)ses)c V{91, -.,9n} generates U((Gs)ses. To do
this, it suffices to show that for every g € U((Gs)ses, there exists ¢’ € {(g1,...,gn)
such that ¢’g(C) = C. We prove this by induction on the distance from C to g(C).
If d(C, g(C)) = 1 then the result just follows by definition of the g;. Now suppose
that the result holds whenever d(C, g(C')) < k and suppose that d(C, g(C)) = k+1.
Find a minimal gallery " : C, Dy, Da, ..., Dy+1 = g(C) between C and g(C) in A.
Then there exists a g; such that ¢;(C) = D;. By the induction hypothesis, since
d(9:(C),9(C)) = n, there exists g” € {g1,...,gn) such that ¢"g;(C) = C. Then

g =¢"g;isin{g1,...,gny and satisfies ¢’g(C’) = C' which completes the proof. O

The universal groups of buildings are also (abstractly) simple under certain as-

sumptions:

THEOREM 6.13. [DMSS18| Theorem 3.25] Let A be a thick right-angled building
of irreducible type (W, S) with prescribed thicknesses (¢s)ses and rank at least 2.
For each s € S, let A5 : Ch(A) — Qs be a weak legal s-labelling and Gs < Sym(€)
a transitive permutation group generated by point stabilisers. Then the universal

group U((Gs)ses) is simple.



CHAPTER 7

Cartan-like Decompositions of Automorphism

Groups of Buildings

In this chapter, we study Cartan-like decompositions of automorphism groups of
semi-regular right-angled buildings with the aim of initiating the study of the con-
traction group and closed range properties for these groups. We continue with a
fixed semi-regular right-angled building A of type (W, S) and prescribed thicknesses
(¢s)ses. Further it is assumed that ¢, < oo for each s € S. We start out by proving
that the group Aut(A)*™ admit a Cartan-like decomposition and the coset repre-
sentatives can be chosen to be in one-to-one correspondence with the elements of

w.

By Proposition 6.1 in [Cap14], the group Aut(A)* acts strongly transitively on
A. For a fixed chamber C € Ch(A), the group of automorphisms in Aut(A)”*
that stabilise C, denoted Aut(A)f, is a compact open subgroup of Aut(A)*. The
following proposition gives an enumeration of the coset representatives for a Cartan-

like decomposition of Aut(A)*:

Proposition 7.1. Let A be a semi-regular right-angled building of type (W, S) with
prescribed thicknesses (¢s)ses such that gs < o for each s € S. Fiz C € Ch(A)
and let K = Aut(A)f. The group Aut(A)* admits a Cartan-like decomposition
Aut(A)T = | |,ca KaK for a collection of coset representatives A = Aut(A)*.
Moreover, A may be chosen to be in one-to-one correspondence with the elements

of W.

ProoOF. Fix an apartment A in A containing C. For each w € W, choose
a chamber C’' € Ch(A) with Weyl distance w from C (i.e. §(C,C’) = w) and
choose an automorphism h,, mapping C to C’. Let A be the collection of all these
hy ie. A = {hy | w e W} We claim that Aut(A)* = | |,c4 KaK. Indeed,
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let g € Aut(A)T and suppose that §(C,g(C)) = w. Choose an apartment A’
containing C' and ¢g(C). Then, by strong transitivity of Aut(A)", there exists an
automorphism k € K mapping the pair (C, A’) to the pair (C,.A). Since k is type-
preserving, §(C, kg(C)) = w and hence it follows that h ,'kg(C') = C. Thus there
exists k' € K with hy'kg = k' ie. g = k™ hyk' €| |,c4 KaK. O

The next goal is to show that the above Cartan-like decomposition of Aut(A)*
satisfies the contraction group property, however, the details of this proof have still
not been fully worked out. The idea is to replicate the proof that the automorphism
group of a label regular tree satisfies the contraction group property seen in [CW20]
(and a similar argument was seen early in this article). In said proof, we are able
to reduce the statement to showing that a sequence of coset representatives (g;)icr
has a non-trivial contraction group, where the g; shift a fixed vertex v (in the case
of buildings, this fixed vertex will be the chamber C in the above proposition)
in the tree some arbitrary distance along an infinite path. We can make the same
arguments for locally finite semi-regular right-angled buildings. In the case of trees,
to find a non-trivial element in the contraction group of the g;, we just need to
choose a non-trivial element in the fixator of one of the semi-trees obtained by
removing the edge {v,w} from the tree, where w is the first vertex on the path

along which the g; shift the fixed vertex.

For right-angled buildings, we also get an analogue of semi-tree’s called s-wings,
and from a result of Caprace in [Cap14], the fixators of s-wings are non-trivial
under light assumptions. It is hoped that we can use these facts to replicate the
proof for trees, but as already mentioned, the details still need to be worked out.
A successful proof that the above decomposition satisfies the contraction group
property will then allow us to deduce closed range results for Aut(A)* and the

universal groups U(Gy)ses under the assumptions required for simplicity.



CHAPTER 8

Conclusion

After giving the reader an overview of the various different examples of totally
disconnected locally compact groups acting on trees, we have successfully studied
the contraction group and closed range properties that arose in the paper [CW20]
in greater detail, proving a number of results and giving a few examples that further
our understanding of these properties. We transferred the closed range result given
in loc. cit. to a larger class of totally disconnected locally compact groups acting
on trees, which also includes a proof that the universal groups U(F') satisfy the
closed range property whenever F' is transitive and generated by point stabilisers.
The article finishes with us initiating the study of the contraction group and closed
range properties for automorphism groups of buildings. This work furthers our
understanding of totally disconnected locally compact groups and further illustrates
some of the similarities that simple totally disconnected locally compact groups

share with Lie groups, and more generally, connected locally compact groups.
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